Attitude Control of a Moving Mass–Actuated UAV Based on Deep Reinforcement Learning

2022 ◽  
Vol 35 (2) ◽  
Author(s):  
Xiaoqi Qiu ◽  
Changsheng Gao ◽  
Kefan Wang ◽  
Wuxing Jing
Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4546
Author(s):  
Weiwei Zhao ◽  
Hairong Chu ◽  
Xikui Miao ◽  
Lihong Guo ◽  
Honghai Shen ◽  
...  

Multiple unmanned aerial vehicle (UAV) collaboration has great potential. To increase the intelligence and environmental adaptability of multi-UAV control, we study the application of deep reinforcement learning algorithms in the field of multi-UAV cooperative control. Aiming at the problem of a non-stationary environment caused by the change of learning agent strategy in reinforcement learning in a multi-agent environment, the paper presents an improved multiagent reinforcement learning algorithm—the multiagent joint proximal policy optimization (MAJPPO) algorithm with the centralized learning and decentralized execution. This algorithm uses the moving window averaging method to make each agent obtain a centralized state value function, so that the agents can achieve better collaboration. The improved algorithm enhances the collaboration and increases the sum of reward values obtained by the multiagent system. To evaluate the performance of the algorithm, we use the MAJPPO algorithm to complete the task of multi-UAV formation and the crossing of multiple-obstacle environments. To simplify the control complexity of the UAV, we use the six-degree of freedom and 12-state equations of the dynamics model of the UAV with an attitude control loop. The experimental results show that the MAJPPO algorithm has better performance and better environmental adaptability.


2021 ◽  
Vol 5 (4) ◽  
pp. 1-24
Author(s):  
Siddharth Mysore ◽  
Bassel Mabsout ◽  
Kate Saenko ◽  
Renato Mancuso

We focus on the problem of reliably training Reinforcement Learning (RL) models (agents) for stable low-level control in embedded systems and test our methods on a high-performance, custom-built quadrotor platform. A common but often under-studied problem in developing RL agents for continuous control is that the control policies developed are not always smooth. This lack of smoothness can be a major problem when learning controllers as it can result in control instability and hardware failure. Issues of noisy control are further accentuated when training RL agents in simulation due to simulators ultimately being imperfect representations of reality—what is known as the reality gap . To combat issues of instability in RL agents, we propose a systematic framework, REinforcement-based transferable Agents through Learning (RE+AL), for designing simulated training environments that preserve the quality of trained agents when transferred to real platforms. RE+AL is an evolution of the Neuroflight infrastructure detailed in technical reports prepared by members of our research group. Neuroflight is a state-of-the-art framework for training RL agents for low-level attitude control. RE+AL improves and completes Neuroflight by solving a number of important limitations that hindered the deployment of Neuroflight to real hardware. We benchmark RE+AL on the NF1 racing quadrotor developed as part of Neuroflight. We demonstrate that RE+AL significantly mitigates the previously observed issues of smoothness in RL agents. Additionally, RE+AL is shown to consistently train agents that are flight capable and with minimal degradation in controller quality upon transfer. RE+AL agents also learn to perform better than a tuned PID controller, with better tracking errors, smoother control, and reduced power consumption. To the best of our knowledge, RE+AL agents are the first RL-based controllers trained in simulation to outperform a well-tuned PID controller on a real-world controls problem that is solvable with classical control.


Author(s):  
Deigant Yadava ◽  
Raunak Hosangadi ◽  
Sai Krishna ◽  
Pranjal Paliwal ◽  
Avi Jain

Sign in / Sign up

Export Citation Format

Share Document