Influence of Lateral Differential Settlement of Subgrade on Dynamic Performance of High-Speed Vehicle System

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Keping Zhang ◽  
Xiaohui Zhang ◽  
Shunhua Zhou
2013 ◽  
Vol 446-447 ◽  
pp. 672-677
Author(s):  
Xiao Yu Wu ◽  
Zhe Ming Chen ◽  
Ze Hao Huang

The traction motor installed on the high-speed train is powered by inverter. A large number of harmonics may appear when motor is operating. Then the motor speed generate oscillation and finally the dynamic characteristic is affected in vehicle system. In this paper, relied on the electromagnetism of traction motor, the mechanism about emerging harmonic torque is analyzed. In addition, based on the equivalent circuit, the method of calculating the parameters in harmonic circuit is proposed. Two mathematical formulas are also proposed to obtain the fundamental electromagnetic torque and the harmonic electromagnetic torque on traction motor. The time domain and frequency domain distributions of the torques are gained and analyzed. Finally a calculation example of traction motor harmonic torque was analyzed and calculated, and prepared for further study of harmonic torque impacting on vehicle system dynamic performance.


2013 ◽  
Vol 712-715 ◽  
pp. 1541-1544
Author(s):  
Yi Jia Wang ◽  
Jing Zeng

With the rapid development of high-speed railways, wheel and rail wear has become increasingly serious due to the acute wheel-rail interaction. During the operation of high speed vehicle, complicated wheel-rail contact force will lead to wheel profile wear, which will worsen the dynamic performance of vehicle system, or even influence the safe operation of vehicles. In order to ensure the vehicle dynamic performance, right now regularly wheel re-profiling has to be adopted. Therefore, the study of wheel profile wear and its effect on vehicle dynamic performance is very important [1,. The purpose of the paper is to study the variation characteristics of vehicle dynamic performance with respect to the wheel profile wear through numerical simulation and field test.


2012 ◽  
Vol 605-607 ◽  
pp. 1168-1171 ◽  
Author(s):  
Tian Li Chen ◽  
Jing Zeng ◽  
Yao Hui Lu ◽  
Li Min Zhang

In order to research the influence of the flexible car body on the vehicle system dynamic performance and to achieve the reasonable match between high speed and lightweight,it is necessary to build vehicle system dynamic model with the rigid car body replaced by the flexible car body. Due to the lower structure natural vibration frequency of car body, the influence of carbody flexibility on vehicle system dynamic performance is more influential. The influences of structural vibration of car body on vehicle system dynamics performance were studied by finite element analysis (FEA) method and multi-body system (MBS) dynamics theory. Rigid-flexible coupled vehicle system dynamic models were built up and the car body key location’s vibration was analyzed through vibration transmission chain. The results show that the influences of high speed carbody structure vibration on vehicle system dynamics performance are distinguished especially in the domain of car body natural vibration frequency.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jianfeng Sun ◽  
Maoru Chi ◽  
Wubin Cai ◽  
Xuesong Jin

The critical speed and hunting frequency are two basic research objects of vehicle system dynamics and have a significant influence on the dynamic performance. A lateral dynamic model with 17 degrees of freedom was established in this study to investigate the critical speed and hunting frequency of a high-speed railway vehicle. The nonlinearities of wheel/rail contact geometry, creep forces, and yaw damper were all considered. A heuristic nonlinear creep model was employed to estimate the contact force between the wheel and the rail. The Maxwell model, which covers the influence of the stiffness characteristic, is used to simulate the yaw damper. To reflect the blow-off of the yaw damper, the damping coefficient is described by stages. Based on the mathematical model, the combined effects of vehicle parameters on the critical speed in the straight line and hunting frequency of the wheelset were investigated innovatively. The novel phenomenon that the hunting frequency exhibits a sudden increase from a smaller value to a larger value when the blow-off of the yaw damper occurs was discovered during the calculations. The extents to which various parameters affect the critical speed and hunting frequency are clear on the basis of the numerical results. Moreover, all of the parameter values were divided into three sections to determine the sensitive range for the critical speed and hunting frequency. The results show that the first section of values plays the decisive role on both the critical speed and the hunting frequency for all parameters analyzed. The investigation in this paper enriches the study of hunting stability and gives some ideas to probably solve the abnormal vibrations during the actual operation.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


Cryogenics ◽  
2021 ◽  
pp. 103321
Author(s):  
Yuhang Yuan ◽  
Jipeng Li ◽  
Zigang Deng ◽  
Zhehao Liu ◽  
Dingding Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document