Generation of Electricity Using Piezoelectric Material: Study on Asphalt Pavement Structure on Rural Road

Author(s):  
Machavarapu Suresh ◽  
Manish Pal ◽  
Dipankar Sarkar ◽  
Kaberi Majumdar
CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zhizhong Zhao ◽  
Mengchen Li ◽  
Yu Wang ◽  
Wenwen Chen ◽  
Yulong Zhao ◽  
...  

2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.


2013 ◽  
Vol 405-408 ◽  
pp. 1725-1732 ◽  
Author(s):  
Guo Qi Tang ◽  
Dong Wei Cao ◽  
Ke Zhong ◽  
Xiao Qiang Yang

The interlayer bonding of double-layer porous asphalt pavement will show more variations with different construction technologies, such as one-step molding by double-layer (hot on hot) paver, or paving layer by layer (hot on cold) with or without tack coat, and the variations will definitely have influences on pavement structure. Different interlayer technologies are studied in this paper on three levels including simulation experiments on specimen by indoor preparation, calculation of pavement mechanics, and construction of testing road, so that optimal interlayer bonding technology for double-layer porous asphalt pavement is discussed in combination with its effect on permeability.


2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


2012 ◽  
Vol 178-181 ◽  
pp. 1541-1544
Author(s):  
Wei Liang ◽  
Ben Hui Gong ◽  
Zhen Bo Zhang

This article describes and analyses the rutting forming process, basic classification, and control standard of the rutting depth, and the results show that, Understanding of the fundamental characteristics of the rut and mastering of the rut control standards, is an important reference index which is used to design the asphalt pavement structure and materials


2020 ◽  
Vol 10 (9) ◽  
pp. 3178
Author(s):  
Hao Li ◽  
Naren Fang ◽  
Xuancang Wang ◽  
Chuanhai Wu ◽  
Yang Fang

The purpose of asphalt pavement structural design is to get a materially-coordinated and structurally-durable product, and a pavement structure with good road performance by combining the structural layer materials reasonably. However, due to lack of a rational evaluation index on the parameter combinations of structural layer materials, the structural layer materials are poor in terms of coordination, have low efficiency, and the actual use period is much lower than the designed working life. Therefore, it is very important to conduct research evaluating the coordination of the structural layer materials. In this study, the sensitivity of mechanical parameters and equivalent envelope area are proposed as new indexes to evaluate the coordination of material design of asphalt pavement structure layers. Software is developed to calculate the equivalent envelope area that can quantitatively evaluate the coordination among different layers and visualize the mechanical transfer behavior of each structural layer. Based on the equivalent envelope area index, this study incorporates two new steps in the design of pavements, namely the structural form comparison and optimization, and proposes a new structural design process. Finally, the rationality and reliability of the equivalent envelope area index are verified by presenting fatigue life calculation and field verification in a test road. The results propose a clear evaluation index of the coordination of material design of each structural layer, which makes the structural design of the asphalt pavement more scientific and reasonable.


Sign in / Sign up

Export Citation Format

Share Document