Investigation of Bagasse Ash as an Alternative Raw Material in Clinker Production

Author(s):  
Suthatip Sinyoung ◽  
Suwimol Asavapisit ◽  
Kittipong Kunchariyakun
2013 ◽  
Vol 51 ◽  
pp. 205-213 ◽  
Author(s):  
Cesar Valderrama ◽  
Ricard Granados ◽  
Jose Luis Cortina ◽  
Carles M. Gasol ◽  
Manel Guillem ◽  
...  

2017 ◽  
Vol 24 (36) ◽  
pp. 27862-27869 ◽  
Author(s):  
Minrui Huang ◽  
Huajun Feng ◽  
Na Li ◽  
Dongsheng Shen ◽  
Yuyang Zhou ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Li Luo ◽  
Yimin Zhang ◽  
Shenxu Bao ◽  
Tiejun Chen

The cement industry has for some time been seeking alternative raw material for the Portland cement clinker production. The aim of this research was to investigate the possibility of utilizing iron ore tailings (IOT) to replace clay as alumina-silicate raw material for the production of Portland cement clinker. For this purpose, two kinds of clinkers were prepared: one was prepared by IOT; the other was prepared by clay as a reference. The reactivity and burnability of raw meal, mineralogical composition and physical properties of clinker, and hydration characteristic of cement were studied by burnability analysis, differential thermal analysis, X-ray diffraction, and hydration analysis. The results showed that the raw meal containing IOT had higher reactivity and burnability than the raw meal containing clay, and the use of IOT did not affect the formation of characteristic mineralogical phases of Portland cement clinker. Furthermore, the physical and mechanical performance of two cement clinkers were similar. In addition, the use of IOT was found to improve the grindability of clinker and lower the hydration heat of Portland cement. These findings suggest that IOT can replace the clay as alumina-silicate raw material for the preparation of Portland cement clinker.


2010 ◽  
Vol 10 (15) ◽  
pp. 1525-1535 ◽  
Author(s):  
T. Punmathari ◽  
M. Rachakornk ◽  
A. Imyim ◽  
M. Wecharatan

2011 ◽  
Vol 90-93 ◽  
pp. 3254-3257
Author(s):  
Jing Min Hong ◽  
Ling Wang ◽  
Jing Lan Hong

A cost combined life cycle assessment was carried out to estimate the economic and environmental impact of redmud as aggregate in cement production. Results showed that the raw materials, transport, electricity and coal had the highest contribution to overall cost, while coal production and direct emissions represented the dominant contribution to overall environment impact. Improving energy and raw material efficiency and minimizing raw materials transport distance are the efficient way to minimize overall environmental and economic impacts.


2015 ◽  
Vol 27 (10) ◽  
pp. 04014272
Author(s):  
Joris Schoon ◽  
Klaartje De Buysser ◽  
Isabel Van Driessche ◽  
Nele De Belie

Sign in / Sign up

Export Citation Format

Share Document