Development of Evaluation Framework for the Unconfined Compressive Strength of Soils Based on the Fundamental Soil Parameters Using Gene Expression Programming and Deep Learning Methods

Author(s):  
Wassel Al Bodour ◽  
Shadi Hanandeh ◽  
Mustafa Hajij ◽  
Yasmin Murad
2020 ◽  
Vol 26 ◽  
Author(s):  
Xiaoping Min ◽  
Fengqing Lu ◽  
Chunyan Li

: Enhancer-promoter interactions (EPIs) in the human genome are of great significance to transcriptional regulation which tightly controls gene expression. Identification of EPIs can help us better deciphering gene regulation and understanding disease mechanisms. However, experimental methods to identify EPIs are constrained by the fund, time and manpower while computational methods using DNA sequences and genomic features are viable alternatives. Deep learning methods have shown promising prospects in classification and efforts that have been utilized to identify EPIs. In this survey, we specifically focus on sequence-based deep learning methods and conduct a comprehensive review of the literatures of them. We first briefly introduce existing sequence-based frameworks on EPIs prediction and their technique details. After that, we elaborate on the dataset, pre-processing means and evaluation strategies. Finally, we discuss the challenges these methods are confronted with and suggest several future opportunities.


2012 ◽  
Vol 45 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Seyyed Mohammad Mousavi ◽  
Pejman Aminian ◽  
Amir Hossein Gandomi ◽  
Amir Hossein Alavi ◽  
Hamed Bolandi

2020 ◽  
Author(s):  
Hryhorii Chereda ◽  
Annalen Bleckmann ◽  
Kerstin Menck ◽  
Júlia Perera-Bel ◽  
Philip Stegmaier ◽  
...  

AbstractMotivationContemporary deep learning approaches show cutting-edge performance in a variety of complex prediction tasks. Nonetheless, the application of deep learning in healthcare remains limited since deep learning methods are often considered as non-interpretable black-box models. Layer-wise Relevance Propagation (LRP) is a technique to explain decisions of deep learning methods. It is widely used to interpret Convolutional Neural Networks (CNNs) applied on image data. Recently, CNNs started to extend towards non-euclidean domains like graphs. Molecular networks are commonly represented as graphs detailing interactions between molecules. Gene expression data can be assigned to the vertices of these graphs. In other words, gene expression data can be structured by utilizing molecular network information as prior knowledge. Graph-CNNs can be applied to structured gene expression data, for example, to predict metastatic events in breast cancer. Therefore, there is a need for explanations showing which part of a molecular network is relevant for predicting an event, e.g. distant metastasis in cancer, for each individual patient.ResultsWe extended the procedure of LRP to make it available for Graph-CNN and tested its applicability on a large breast cancer dataset. We present Graph Layer-wise Relevance Propagation (GLRP) as a new method to explain the decisions made by Graph-CNNs. We demonstrate a sanity check of the developed GLRP on a hand-written digits dataset, and then applied the method on gene expression data. We show that GLRP provides patient-specific molecular subnetworks that largely agree with clinical knowledge and identify common as well as novel, and potentially druggable, drivers of tumor progression. As a result this method could be potentially highly useful on interpreting classification results on the individual patient level, as for example in precision medicine approaches or a molecular tumor board.Availabilityhttps://gitlab.gwdg.de/UKEBpublic/graph-lrphttps://frankkramer-lab.github.io/MetaRelSubNetVis/[email protected]


2021 ◽  
Vol 6 (12) ◽  
pp. 181
Author(s):  
Van-Ngoc Pham ◽  
Erwin Oh ◽  
Dominic E. L. Ong

The study aims to develop a reliable model using gene-expression programming (GEP) technique for estimating the unconfined compressive strength (UCS) of soil stabilization by cement and fly ash. The model considered the effects of several parameters, including the fly ash characteristics such as calcium oxide (CaO) content, CaO/SiO2 ratio, and loss of ignition. The research results show that the proposed model demonstrates superior performance with a high correlation coefficient (R > 0.955) and low errors. Therefore, the model could be confidently applied in practice for a variety of fly ash qualities. Besides, the parametric study was conducted to examine the effect of fly ash characteristics on the strength of soil stabilization. The study indicates that if the fly ash contains a high amount of calcium oxide, the strength of fly ash stabilized soil is significant. In addition, fly ash could be used in combination with cement to increase the strength of the mixture. A fly ash replacement ratio is suggested from 0.19 to 0.35, corresponding to the total binder used from 10% to 30%. The research findings could help engineers in optimizing the fly ash proportion and estimating the UCS of soil stabilization by cement and fly ash.


2020 ◽  
Vol 10 (3) ◽  
pp. 854 ◽  
Author(s):  
Jiali Tang ◽  
Chenrong Huang ◽  
Jian Liu ◽  
Hongjin Zhu

Current mainstream super-resolution algorithms based on deep learning use a deep convolution neural network (CNN) framework to realize end-to-end learning from low-resolution (LR) image to high-resolution (HR) images, and have achieved good image restoration effects. However, as the number of layers in the network is increased, better results are not necessarily obtained, and there will be problems such as slow training convergence, mismatched sample blocks, and unstable image restoration results. We propose a preclassified deep-learning algorithm (MGEP-SRCNN) using Multilabel Gene Expression Programming (MGEP), which screens out a sample sub-bank with high relevance to the target image before image block extraction, preclassifies samples in a multilabel framework, and then performs nonlinear mapping and image reconstruction. The algorithm is verified through standard images, and better objective image quality is obtained. The restoration effect under different magnification conditions is also better.


Sign in / Sign up

Export Citation Format

Share Document