Effect of Laboratory Aging Levels on Asphalt Binder Chemical/Rheological Properties and Fracture Resistance of Asphalt Mixtures

Author(s):  
Peyman Barghabany ◽  
Jun Zhang ◽  
Louay N. Mohammad ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper
2020 ◽  
Vol 38 (5A) ◽  
pp. 789-800
Author(s):  
Duaa A. Khalaf ◽  
Zaynab I. Qasim ◽  
Karim H. Al Helo

This research investigates the behavior of Stone Matrix Asphalt mixtures (SMA) modified with styrene-butadiene-styrene (SBS) polymer at four percentages (1, 2, 3 and 4%) by weight of asphalt cement. The moisture susceptibility and rutting were taken into consideration in this study. To achieve the objective of this research the superpave system is conducted to design the asphalt mixtures. The physical properties of aggregate, bitumen and other mix materials were assessed and evaluated with the laboratory tests. The mixtures were prepared using penetration Graded (40-50) bitumen and a chemical named Polypropylene Fibers was used as a stabilizing additive. Fibers have been used in SMA mixtures for two main reasons: To increase the toughness and fracture resistance of hot mix asphalt (HMA) and to act as a stabilizer to prevent drain down of the asphalt binder. The laboratory tests include indirect tensile strength test, Marshall stability and retained Marshall Stability test (RMS). For rutting test the Roller wheel compactor is used for preparing the asphaltic samples and Wheel tracking device is used to evaluate the rutting of asphaltic slabs. The results showed that the SBS polymer asphalt mixture gave better moisture sensitivity and better fracture resistance according to the study.It is noted that indirect tensile strength ratio (TSR) increases by 93.1 % and the rut depth decreases by 32.5 % when adding 3% SBS polymer to SMA.


2012 ◽  
Vol 39 (10) ◽  
pp. 1125-1135 ◽  
Author(s):  
Hainian Wang ◽  
Zhanping You ◽  
Shu Wei Goh ◽  
Peiwen Hao ◽  
Xiaoming Huang

Crumb rubber is the recycled rubber particle obtained from mechanical shearing or grinding scrap tires into small particle sizes less than 6.3 mm (or approximately 1/4”). The rheological properties of asphalt binder have an important effect on the field performance of asphalt mixtures and the long-term serviceability of asphalt pavement. The objective of this research is to evaluate the high temperature rheological performance of rubber asphalt binder based on the complex shear modulus (|G*|) and the phase angle (δ) values using the dynamic shear rheometer. Five rubber asphalt dosages at 0, 10, 15, 20, and 25% by weight of asphalt (Superpave PG 64-22), respectively, were used to modify asphalt binder; and three rubber particle meshes, 20#, 30#, and 40#, were utilized in this research. The |G*| at various temperatures and frequencies were tested on each sample, including original and short-term aging binder using the rolling thin-film over. The master curves of |G*|/sin(δ) for each type of rubber asphalt was generated to investigate its rheological properties over a broad range of temperatures and frequencies. Based on the testing results, it was found that the addition of crumb rubber significantly increases the |G*| of asphalt binder, which is desirable to potentially improve the anti-rutting performance of asphalt mixtures. It was also found that the addition of 10% mesh crumb rubbers bumps up the high temperature grade of asphalt, from PG64 to PG76 in this case. The master curve using the |G*|/sin(δ) of rubber asphalt shows a substantial improvement in rutting resistant at each testing temperature and loading frequency. However, it was noteworthy that the rutting resistance enhancement of crumb rubber was affected by the percentage of rubber used, the rubber particle size and its aging condition.


2021 ◽  
Vol 13 (12) ◽  
pp. 6634
Author(s):  
Hayder Al Hawesah ◽  
Monower Sadique ◽  
Clare Harris ◽  
Hassan Al Nageim ◽  
Karl Stopp ◽  
...  

Hot mix asphalt has various benefits such as good workability and durability. It is one of the most general materials used as asphalt mixtures in road pavements. Asphalt mixtures and binders can be improved by modifying them with various additives. Gilsonite is a natural asphalt hydrocarbon which may be used as an additive to hot mix asphalt. It is used as an asphalt binder modifier (wet process) and an asphalt mixture modifier (dry process) to improve the properties of the mix. It provides the option of improved rheological properties, stability, strength rutting resistance and moisture sensitivity. This paper examines the current research relating to the use of gilsonite to improve the asphalt properties (binder and mixture). The rheological properties of the modified asphalt binders and mechanical properties of the modified asphalt mixtures will be reviewed. The influence of adding gilsonite individually or combined with other additives will be discussed. Furthermore, assessment of the environmental and economic perspectives of the studied asphalt along with some suggestions to improve the asphalt binders and mixtures will be explored.


2022 ◽  
Vol 13 (1) ◽  
pp. 140-152
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman

The use of reclaimed asphalt pavement (RAP) and/or recycled asphalt shingles (RAS) in the asphalt mixtures is a common practice in the U.S.A. However, there is a controversy to date on how RAP/RAS interact with virgin asphalt binders (VABs) in asphalt mixtures. For mixtures containing RAP/RAS, the aged asphalt binders in RAP and air-blown asphalt binders in RAS alter the performances of the extracted asphalt binders (EABs). Thus, the rheological properties of EABs from these mixtures require more investigation. The focus of this paper was relating the high-temperature properties of EABs from field cores to the corresponding rolling thin film oven aged virgin asphalt binders (RTFO AVABs). Furthermore, a comparison of the effect of RAP and RAS on the high-temperature rheological properties of EABs was another objective. Different asphalt cores were collected from the field within two weeks after the pavement construction process in 2016. These cores represented eight asphalt mixtures with different asphalt binder replacement percentages by RAP, RAS, or both. The asphalt binders were extracted from these mixtures and considered as RTFO AVABs. The high-temperature rheological properties included the temperature sweep and frequency sweep testing and the multiple stress creep recovery testing. The EABs had higher stiffnesses and elasticates than the corresponding RTFO AVABs because of the aged binders in RAP/RAS. The binders in RAP interacted more readily with VABs than RAS binders.


2008 ◽  
Vol 385-387 ◽  
pp. 753-756 ◽  
Author(s):  
Shao Peng Wu ◽  
Bo Li ◽  
Jun Feng Huang ◽  
Zhi Fei Liu

It is currently interesting to use thermal or electrical conductive asphalt mixtures for snow-melting and maintenance of asphalt pavements in winter or strain-sensing application. Graphite is the principal conductive filler for asphalt mixtures. The addition of Graphite not only makes asphalts conductive but also has effects on other properties. Considering the visco-elastic property of asphalt, the effects of graphite on rheological properties of asphalt binders were investigated by Viscosity Test(VT) and Dynamic Shear Rheometer(DSR). The results of Viscosity Test indicate that viscosity of asphalt binder increases with an increasing amount of graphite. And the effect is more prominent at higher amount and lower temperature. It means that graphite makes asphalt binders stiffer. The results from DSR tests present that the values of complex modulus increase while phase angles decrease under a proper amount of graphite. It infers that proper amount of graphite can make asphalt a more elastic like material. And the results of rutting parameter point out that graphite can improve the rutting resistance of asphalts.


2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document