Influence of strain relaxation of the AlxGa1−xN barrier on transport properties of the two-dimensional electron gas in modulation-doped AlxGa1−xN/GaN heterostructures

2000 ◽  
Vol 76 (19) ◽  
pp. 2746-2748 ◽  
Author(s):  
B. Shen ◽  
T. Someya ◽  
Y. Arakawa
2001 ◽  
Vol 693 ◽  
Author(s):  
Z. W. Zheng ◽  
B. Shen ◽  
C. P. Jiang ◽  
S. L. Guo ◽  
J. Liu ◽  
...  

AbstractMagnetotransport properties of Al0.22Ga0.78N/GaN modulation-doped heterostructures have been studied at low temperatures and high magnetic fields. The inter-subband scattering of the two-dimensional electron gas was observed. The inter-subband scattering is very weak and depends weakly on temperature when temperature is between 1.3 K and 10 K and becomes stronger with increasing temperature when temperature is higher than 10 K. The strain relaxation of the Al0.22Ga0.78N layer influences the inter-subband scattering. It is suggested that the inter-subband scattering is dominant by the elastic scattering when temperature is lower than 10 K, and changes to be dominant by the inelastic scattering of the acoustic phonons when temperature is higher than 10 K.


1999 ◽  
Vol 595 ◽  
Author(s):  
Narihiko Maeda ◽  
Tadashi Saitoh ◽  
Kotaro Tsubaki ◽  
Toshio Nishida ◽  
Naoki Kobayashi

Two-dimensional electron gas transport properties have been investigated in nitride double-heterostructures. A striking effect has been observed that the two-dimensional electron gas mobility has been drastically enhanced in the AlGaN/GaN/AlGaN doubleheterostructure, compared with that in the conventional AlGaN/GaN singleheterostructure. The observed mobility enhancement has been shown to be mainly due to the enhanced polarization-induced electron confinement in the double-heterostructure, and additionally due to the improvement of the interface roughness in the structure. Device operation of an AlGaN/GaN/AlGaN double-heterostructure field effect transistor has been demonstrated: a maximum transconductance of 180 mS/mm has been obtained for a 0.4 mm-gate-length device. In the double-heterostructure using InGaN channel, the increased capacity for the two-dimensional electron gas has been observed. The AlGaN/(In)GaN/AlGaN double-heterostructures are effective for improving the electron transport properties.


Sign in / Sign up

Export Citation Format

Share Document