Local heat transfer coefficients and superficial bed porosity of a horizontal cylinder in bubbling fluidized beds of geldart B particles

2012 ◽  
Author(s):  
Francesco Di Natale ◽  
Roberto Nigro

1980 ◽  
Vol 102 (1) ◽  
pp. 152-157 ◽  
Author(s):  
R. Chandran ◽  
J. C. Chen ◽  
F. W. Staub

The local characteristics of heat transfer from horizontal tubes immersed in fluidized beds were investigated experimentally. Steady-state heat transfer measurements were obtained in air-fluidized beds of glass beads, both for a single tube and a ten-row bare tube bundle. The test results indicated that local heat transfer coefficients are strongly influenced by angular position and gas flow rate, as well as by particle size and system pressure. The heat transfer coefficients, averaged around the circumference of the tube, exhibited a general tendency to increase with decreasing particle size and increasing system pressure. The heat transfer coefficients for a tube in an inner-row position within the bundle were found to be slightly higher than those for a tube in the bottom-row. Comparison of the average heat transfer coefficient data obtained in this study with some of the existing correlations for heat transfer from horizontal tubes showed that the correlations are unsatisfactory.



1986 ◽  
Vol 40 (1-6) ◽  
pp. 335-344 ◽  
Author(s):  
MARIA C. MAGILIOTOU ◽  
MARC J. ASSAEL ◽  
STAVROS G. NYCHAS




2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.



Sign in / Sign up

Export Citation Format

Share Document