scholarly journals Structural characterisation of BaTiO3 thin films deposited on SrRuO3/YSZ buffered silicon substrates and silicon microcantilevers

2014 ◽  
Vol 115 (5) ◽  
pp. 053506 ◽  
Author(s):  
H. Colder ◽  
B. Domengès ◽  
C. Jorel ◽  
P. Marie ◽  
M. Boisserie ◽  
...  
2018 ◽  
Author(s):  
K. A. Rubin ◽  
W. Jolley ◽  
Y. Yang

Abstract Scanning Microwave Impedance Microscopy (sMIM) can be used to characterize dielectric thin films and to quantitatively discern film thickness differences. FEM modeling of the sMIM response provides understanding of how to connect the measured sMIM signals to the underlying properties of the dielectric film and its substrate. Modeling shows that sMIM can be used to characterize a range of dielectric film thicknesses spanning both low-k and medium-k dielectric constants. A model system consisting of SiO2 thin films of various thickness on silicon substrates is used to illustrate the technique experimentally.


1997 ◽  
Vol 481 ◽  
Author(s):  
Patrick L. Smith ◽  
Richard Ortega ◽  
Bill Brennan

ABSTRACTThe formation of TiSi2 thin films using the SALICIDE process on doped and undoped silicon substrates was studied. XRD TEM, AES, RBS and four probe Rs were used to characterize the material. Unit cell parameters and energetics were determined. Results confirm electrical and chemical signatures consistent with the known C49 conversion to C54. However, XRD indicated a structurally different intermediate phase occurs during the C49 to C54 transformation. Modeling was performed based on C11b structure (14/mmm) type, with the Ti and Si atoms arranged similarly to those in MoSi2. The unit cell was determined to be a = 4.428 Å, b = 4.779 Å, c = 9.078 Å with a Fmmm space group and total pseudo-potential plane wave calculations based on crystallographic simulations of −103.96 ev/Atom.


2021 ◽  
pp. 126323
Author(s):  
Joseph A. De Mesa ◽  
Angelo P. Rillera ◽  
Melvin John F. Empizo ◽  
Nobuhiko Sarukura ◽  
Roland V. Sarmago ◽  
...  

2009 ◽  
Vol 1222 ◽  
Author(s):  
Pengzhao Gao ◽  
Evgeny V. Rebrov ◽  
Jaap C. Schouten ◽  
Richard Kleismit ◽  
John Cetnar ◽  
...  

AbstractNanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by sol–gel method on polycrystalline silicon substrates. The morphology and microwave absorption properties of the films calcined in the 673–1073 K range were studied by using XRD, AFM, near–field evanescent microwave microscopy, coplanar waveguide and direct microwave heating measurements. All films were uniform without microcracks. The increase of the calcination temperature from 873 to 1073 K and time from 1 to 3h resulted in an increase of the grain size from 12 to 27 nm. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2–15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315–355 K was observed in the film close to the critical grain size of 21 nm in diameter marked by the transition from single– to multi–domain structure of nanocrystals in Ni0.5Zn0.5Fe2O4 film and by a maximum in its coercivity.


1999 ◽  
Vol 606 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
R. S. Katiyar ◽  
A. L. M. Cruz ◽  
...  

AbstractIn the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.


1995 ◽  
Vol 10 (12) ◽  
pp. 3124-3128 ◽  
Author(s):  
Z.S. Zheng ◽  
J.R. Liu ◽  
X.T. Cui ◽  
W.K. Chu ◽  
S.P. Rangarajan ◽  
...  

The simultaneous determination of light element contamination levels and accurate nitrogen-to-metal ratios in nitride thin films deposited on silicon substrates is demonstrated by using α-particle beam energies in the range 3–4 MeV. In this energy range, significant light element sensitivity enhancements are observed, while the heavy elements show classical Rutherford behavior. The use of resonance scattering at different resonance energies is shown to be the method of choice for analyzing BN films on silicon. Also, a technique is suggested for analyzing very thin films in which an aluminum foil substrate and buffer layer are used to enhance sensitivities.


1994 ◽  
Vol 145 (2) ◽  
pp. 415-424 ◽  
Author(s):  
K. Herz ◽  
M. Powalla ◽  
A. Eicke

Sign in / Sign up

Export Citation Format

Share Document