Electric field formation in three different plasmas: A fusion reactor, arc discharge, and the ionosphere

2017 ◽  
Vol 24 (11) ◽  
pp. 112505 ◽  
Author(s):  
Kwan Chul Lee
Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 522
Author(s):  
Koji Kakutani ◽  
Yoshihiro Takikawa ◽  
Yoshinori Matsuda

We developed an arc discharge exposer (ADE) that kills rice weevils nesting in dried rice. The ADE features multiple identical metal plates, half of these are linked to a voltage generator and the others are grounded. The plates were arrayed in parallel and an electric field formed between them. Any insect entering the field was arced from the negatively charged plate and killed. The ADE was placed on a vessel containing pest-infested rice grains; the insects were lured out of the grains by mechanically vibrating the vessel. When rice grains move, insects tend to climb upward, thus, the weevils were effectively removed. Our electrostatic apparatus is easy to construct and could be used to control pests in stored rice.


1994 ◽  
Vol 359 ◽  
Author(s):  
C. J. Brabec ◽  
A. Maiti ◽  
C. Roland ◽  
J. Bernholc

ABSTRACTIt has been shown experimentally that the growth of carbon nanotubes in an arc discharge is open-ended. This is surprising, because dangling bonds at the end of open tubes make the closed tube geometry more favorable energetically. Recently, it has been proposed that the large electric fields present at the tip of tube is the critical factor that keeps the tube open. We have studied the effects of the electric field on the growth of the nanotubes via ab initio molecular dynamics simulations. Surprisingly, it is found that the electric field cannot play a significant role in keeping the tubes open, implying that some other mechanism must be important. Extensive studies of the energetics and simulations of the growth of tubes were performed using a threebody Tersoff-Brenner potential. Our results show that there exists a critical diameter of ∼ 3 nm above which a defect-free growth of a straight tubule is possible. Narrower tubes stabilize configurations with adjacent pentagons that lead to tube-closure and termination of the growth. This explains the absence of tube narrower than 2.2 nm in arc discharge experiments.


2019 ◽  
Vol 89 (10) ◽  
pp. 1556
Author(s):  
Н.А. Тимофеев ◽  
В.С. Сухомлинов ◽  
G. Zissis ◽  
И.Ю. Мухараева ◽  
Д.В. Михайлов ◽  
...  

AbstractWe have studied a high- (ultrahigh-) pressure short-arc discharge in xenon with thoriated tungsten cathodes. A system of equations formulated based on earlier experimental data indicating possible emission of cathode material (thorium) into the discharge gap has made it possible to determine the electric field strength, plasma temperature, and concentration of thorium atoms as well as thorium and xenon ions in the plasma. The problem has been solved for a model discharge between planar electrodes. The results indicate the key role of thorium atoms in the cathode region. Thorium atoms determine the ionization balance and other electrokinetic properties of plasma. Emission of thorium atoms reduces the plasma temperature at the cathode, which turns out to be noticeably lower than the plasma temperature near the anode; this is a new result that agrees with experimental data. Other electrokinetic characteristics of the plasma (in particular, charged particle concentration and electric field strength) are also in good agreement with the experiment.


2006 ◽  
Vol 31 (4-9) ◽  
pp. 454-461 ◽  
Author(s):  
V.M. Sorokin ◽  
A.K. Yaschenko ◽  
V.M. Chmyrev ◽  
M. Hayakawa

2019 ◽  
Vol 6 (2) ◽  
pp. 111-114
Author(s):  
R. Kornev ◽  
P. Sennikov ◽  
V. Nazarov ◽  
A. Kut'in ◽  
A. Plekhovich

A contracted RF (40.68 MHz) arc discharge of atmospheric pressure, stabilized between two rod electrodes, was used to obtain trichlorosilane by the reaction of hydrogen reduction of silicon tetrachloride (SiCl<sub>4</sub>). In model mixtures of macro-composition in the ratio H<sub>2</sub>/SiCl<sub>4</sub>/CCl<sub>4</sub>=10/1/1, it was shown that C and SiC are the main solid-phase product which are deposited on the surface of electrodes in the form of dendrides. The temperature of the ends of the electrodes determined using emission thermometry is 1600 K. The thermodynamic analysis of H<sub>2</sub>+SiCl<sub>4</sub>+CCl<sub>4</sub> system confirms that the formation of C and SiC occurs in the temperature range of 1600 K. The deposition of solid-phase products occurs on the electrodes in the zone of high electric field strength.


It was observed originally by Stark that a stream of mercury vapour allowed to distil away from the arc or glow discharge in vacuo remains luminous. It may be said to carry the luminosity away with it, and in the case of the arc discharge there is no difficulty in detecting the luminosity for 50 cm. or so from the source. Stark found that when a glow discharge was used, which developed the continuous band spectrum, this spectrum could be detected in the distilled vapour, along with the line spectrum. When the glow was passed through an electric field, the line spectrum was found to be quenched, leaving the band spectrum unaffected. The arc discharge, on the other hand, gave only the line spectrum in his experiments.


2014 ◽  
Vol 21 (9) ◽  
pp. 090706 ◽  
Author(s):  
Hui Liu ◽  
Huan Wu ◽  
Yinjian Zhao ◽  
Daren Yu ◽  
Chengyu Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document