scholarly journals Testing and model validation of a prototype moving packed-bed particle-to-sCO2 heat exchanger

2020 ◽  
Author(s):  
Kevin J. Albrecht ◽  
Matthew D. Carlson ◽  
Hendrik F. Laubscher ◽  
Robert Crandell ◽  
Nicolas DeLovato ◽  
...  
2021 ◽  
Author(s):  
Chase Ellsworth Christen

Solid particles are being considered in several high temperature thermal energy storage systems and as heat transfer media in concentrated solar power (CSP) plants. The downside of such an approach is the low overall heat transfer coefficients in shell-and-plate moving packed bed heat exchangers caused by the inherently low packed bed thermal conductivity values of the low-cost solid media. Choosing the right particle size distribution of currently available solid media can make a substantial difference in packed bed thermal conductivity, and thus, a substantial difference in the overall heat transfer coefficient of shell-and-plate moving packed bed heat exchangers. Current research exclusively focuses on continuous unimodal distributions of alumina particles. The drawback of this approach is that larger particle sizes require wider particle channels to meet flowability requirements. As a result, only small particle sizes with low packed bed thermal conductivities have been considered for the use in the falling-particle Gen3 CSP concepts. Here, binary particle mixtures, which are defined in this thesis as a mixture of two continuous unimodal particle distributions leading to a continuous bimodal particle distribution, are considered to increase packed bed thermal conductivity, decrease packed bed porosity, and improve moving packed bed heat exchanger performance. This is the first study related to CSP solid particle heat transfer that has considered the packed bed thermal conductivity and moving packed bed heat exchanger performance of bimodal particle size distributions at room and elevated temperatures. Considering binary particle mixtures that meet particle sifting segregation criteria, the overall heat transfer coefficient of shell-and-plate moving packed bed heat exchangers can be increased by 23% when compared to a monodisperse particle system. This work demonstrates that binary particle mixtures should be seriously considered to improve shell-and-plate moving packed bed heat exchangers.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Clifford K. Ho ◽  
Matthew Carlson ◽  
Kevin J. Albrecht ◽  
Zhiwen Ma ◽  
Sheldon Jeter ◽  
...  

This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥20 MPa) and high temperature (≥700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytic hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability, and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kWt shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.


2020 ◽  
pp. 127356
Author(s):  
Ainara Ateka ◽  
Pablo Rodriguez-Vega ◽  
Tomás Cordero-Lanzac ◽  
Javier Bilbao ◽  
Andrés T. Aguayo

2021 ◽  
Author(s):  
Kevin Albrecht ◽  
Matthew Carlson ◽  
Hendrik Laubscher ◽  
Nicolas Delovato ◽  
Clifford K. Ho

2021 ◽  
Vol 333 ◽  
pp. 03006
Author(s):  
Soichiro Ohno ◽  
Shuji Hironaka ◽  
Jun Fukai

About 60% of the energy input in the chemical industry is discarded from the plant. Energy saving can be achieved in the entire plant by recovering these waste heats and reusing them as power and heat sources in the power plant. An adsorption heat pump has been developed for the purpose of regeneration of such unused energy. In this study, saturated humid air was supplied to a device packed with 13X zeolite particles of 4 mm in diameter. The time variation of temperature in the apparatus was measured experimentally. Then, the maximum temperature was estimated from the relationship between heat balance and adsorption equilibrium. The trend of the maximum temperature calculated from the heat balance is consistent with experiment. Further, it was found from the result of the heat balance equation that the sensible heat of the humid air supplied and the heat of adsorption of the zeolite are mainly distributed to the sensible heat of the zeolite. In the future, it is important to make effective use of the sensible heat of this zeolite. In order to extract more thermal energy from the device, it is necessary to improve the heat transfer between the packed bed and medium. A double pipe heat exchanger having a zeolite packed bed on the annular side was proposed as an apparatus. Flow direction of the humid air supplied to device was changed in two different ways. The one of them is supplying humid air radial flowly to the device and another is supplying the air in parallel flow. The influence of flow direction on heat transfer between packed bed and medium is studied with numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document