Stagnation line due to colliding wall jets of two liquid impinging jets on a horizontal surface

2021 ◽  
Vol 33 (4) ◽  
pp. 047112
Author(s):  
Behzad Mohajer ◽  
Anshuman Dey ◽  
Ri Li
2007 ◽  
Vol 34 (6) ◽  
pp. 744-751 ◽  
Author(s):  
Kerry A Mazurek ◽  
Tanvir Hossain

A technique is developed in this paper to unify the methods of analyzing scour by turbulent water jets in cohesionless and cohesive soils. Data from previous studies using circular turbulent impinging jets and circular turbulent wall jets are used to compare the scour in low void ratio cohesive soils to that in uniform sands and gravels. Scour by these jets is related to the dimensionless excess stress on the soil bed. It is seen that this parameter will likely work well for developing a method to predict scour for circular wall jets that is applicable to both materials. However, a circular impinging jet appears to vary appreciably in its interaction with the bed between the two types of soil, which makes developing a unified method to predict scour by impinging jets more difficult. Key words: erosion, scour, water jets, cohesionless sediments, cohesive sediments, fine-grained soils, coarse-grained soils.


1993 ◽  
Vol 115 (1) ◽  
pp. 91-98 ◽  
Author(s):  
D. A. Zumbrunnen ◽  
M. Aziz

An experimental investigation has been performed to study the effect of flow intermittency on convective heat transfer to a planar water jet impinging on a constant heat flux surface. Enhanced heat transfer was achieved by periodically restarting an impinging flow and thereby forcing renewal of the hydrodynamic and thermal boundary layers. Although convective heat transfer was less effective during a short period when flow was interrupted, high heat transfer rates, which immediately follow initial wetting, prevailed above a threshold frequency, and a net enhancement occurred. Experiments with intermittent flows yielded enhancements in convective heat transfer coefficients of nearly a factor of two, and theoretical considerations suggest that higher enhancements can be achieved by increasing the frequency of the intermittency. Enhancements need not result in an increased pressure drop within a flow system, since flow interruptions can be induced beyond a nozzle exit. Experimental results are presented for both the steady and intermittent impinging jets at distances up to seven jet widths from the stagnation line. A theoretical model of the transient boundary layer response is used to reveal parameters that govern the measured enhancements. A useful correlation is also provided of local heat transfer results for steadily impinging jets.


AIAA Journal ◽  
1981 ◽  
Vol 19 (10) ◽  
pp. 1286-1293 ◽  
Author(s):  
M. J. Siclari ◽  
W. G. Hill ◽  
R. C. Jenkins

Author(s):  
Toshihiko Shakouchi ◽  
Takumi Maruyama ◽  
Toshitake Ando ◽  
Koichi Tsujimoto ◽  
Atsushi Watanabe

Various kinds of impinging jets are used widely in many industry fields, such as the cooling of a heated plate or electronic components, drying of textiles, film, and paper because of their high heat and mass transfer rates at and near the stagnation point. Many studies on impinging jets from circular and orifice nozzles have been made [1]–[6]. It is well known that as nozzle-plate spacing decreases considerably the heat transfer rate becomes much larger, for example the maximum heat transfer rate of a circular impinging air jet with a low nozzle-plate spacing h/d = 0.1 (d: nozzle exit diameter) and Reynolds number Re = umd/ν = 2.3 × 104 is about 2.17 times of that for h/d = 0.2, but at the same time the flow resistance or operating power of the nozzle-plate system increases considerably. In order to improve or enhance the heat transfer rate, it is needed to increase the impinging mean and fluctuating velocities without increasing the operating power. To achieve this object it is considered to use a resonance jet. In this paper, the flow, acoustic and heat transfer characteristics of resonance free, impinging and wall jets are made clear experimentally. Moreover, flow visualization of the water jet flow by a tracer method is also made to examine the vortex structure at the shear layer and inside the resonance room. As a result, the heat transfer rate of the impinging jet by a resonance nozzle can be improved and enhanced considerably.


Author(s):  
M. Ashok Kumar ◽  
B. V. S. S. S. Prasad

A computational study is reported on flow and heat transfer from single row of circular air jets impinging on a concave surface with either one or two rows of effusion holes and without effusion holes. The effects of arrangement of jet orifices and effusion holes, spent air exit closure configurations, H/D ratio and jet Reynolds number are investigated. The pressure distribution is higher for the configuration with the air exit only through effusion holes. At higher Reynolds number, three peaks in local Nusselt number are identified and explained. Among the cases tested, the configuration with single row of inline effusion holes shows the least heat transfer and there is a significant local enhancement in heat transfer along the stagnation line for single row of staggered effusion holes. However, the effect of arrangement is negligible for two rows of effusion holes. Among the configuration tested the case of one edge open exit configuration with single row of staggered effusion holes (Case-C1s) shows higher heat transfer among others.


1999 ◽  
Vol 121 (3) ◽  
pp. 683-690 ◽  
Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng

Measurements of detailed heat transfer coefficients on two principal walls of a triangular duct with a swirling flow are undertaken by using a transient liquid crystal technique. The vertex corners of the triangular duct are 45, 45, and 90 deg. The swirl-motioned airflow is induced by an array of tangential jets on the side entries. The effects of flow Reynolds number (8600 ≦ Re ≦ 21000) and the jet inlet angle (α = 75, 45, and 30 deg) are examined. Flow visualization by using smoke injection is conducted for better understanding the complicated flow phenomena in the swirling-flow channel. Results show that the heat transfer for α = 75 deg is enhanced mainly by the wall jets as well as the impinging jets; while the mechanisms of heat transfer enhancement for α = 45 and 30 deg could be characterized as the swirling-flow cooling. On the bottom wall, jets at α = 75 deg produce the best wall-averaged heat transfer due to the strongest wall-jet effect among the three angles (α) investigated. On the target wall, however, the heat transfer enhancements by swirling flow (α = 45 and 30 deg) are slightly higher than those by impinging jets (α = 75 deg). Correlations for wall-averaged Nusselt number for the bottom and target walls of the triangular duct are developed in terms of the flow Reynolds number for different jet inlet angles.


Author(s):  
X. Li ◽  
J. L. Gaddis ◽  
T. Wang

Closed loop steam has been chosen for cooling airfoils in heavy frame Advanced Turbine Systems (ATS) to improve efficiency. Enhanced cooling by the use of mist is considered to have potential to augment cooling by internal steam alone. Water droplets generally less than 10μm are added to 1.3 bar steam and injected through a row of four discrete round jets onto a heated surface. The Reynolds number is varied from 7500 to 22500 and the heat flux varied from 3.3 to 13.4 kW/m2. The mist increases the heat transfer coefficient along the stagnation line and downstream wanes in about 5 jet diameters. The heat transfer coefficient improves by 50 to 700 percent at the stagnation line for mist concentrations 0.75 to 3.5 percent by weight, depending on conditions. Off-axis maximum cooling occurs in most of the mist/steam flow but not in the steam-only flow. CFD simulation indicates that this off-axis cooling peak is caused by droplets’ interaction with the target walls.


1999 ◽  
Vol 9 (3) ◽  
pp. 277-289 ◽  
Author(s):  
Wei-Hsiang Lai ◽  
Wennon Huang ◽  
Tsung-Leo Jiang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document