In situ imaging of three dimensional freeze printing process using rapid x-ray synchrotron radiography

2022 ◽  
Vol 93 (1) ◽  
pp. 013703
Author(s):  
Guang Yang ◽  
Halil Tetik ◽  
Johanna Nelson Weker ◽  
Xianghui Xiao ◽  
Shuting Lei ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1615
Author(s):  
Qiong Li ◽  
Jürgen Gluch ◽  
Zhongquan Liao ◽  
Juliane Posseckardt ◽  
André Clausner ◽  
...  

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.


2014 ◽  
Vol 53 (17) ◽  
pp. 4460-4464 ◽  
Author(s):  
Jiajun Wang ◽  
Yu-chen Karen Chen-Wiegart ◽  
Jun Wang
Keyword(s):  

2018 ◽  
Vol 2 (4) ◽  
pp. 24 ◽  
Author(s):  
Anton Davydok ◽  
Thomas Cornelius ◽  
Zhe Ren ◽  
Cedric Leclere ◽  
Gilbert Chahine ◽  
...  

The three-point bending behavior of a single Au nanowire deformed by an atomic force microscope was monitored by coherent X-ray diffraction using a sub-micrometer sized hard X-ray beam. Three-dimensional reciprocal-space maps were recorded before and after deformation by standard rocking curves and were measured by scanning the energy of the incident X-ray beam during deformation at different loading stages. The mechanical behavior of the nanowire was visualized in reciprocal space and a complex deformation mechanism is described. In addition to the expected bending of the nanowire, torsion was detected. Bending and torsion angles were quantified from the high-resolution diffraction data.


Nano Energy ◽  
2016 ◽  
Vol 27 ◽  
pp. 147-156 ◽  
Author(s):  
Chaojiang Niu ◽  
Xiong Liu ◽  
Jiashen Meng ◽  
Lin Xu ◽  
Mengyu Yan ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


Author(s):  
A. L. Kastengren ◽  
C. F. Powell ◽  
Z. Liu ◽  
K. Fezzaa ◽  
J. Wang

Phase-enhanced x-ray imaging has been used to examine the geometry and dynamics of four diesel injector nozzles. The technique uses a high-speed camera, which allows the dynamics of individual injection events to be observed in real time and compared. Moreover, data has been obtained for the nozzles from two different viewing angles, allowing for the full three-dimensional motions of the needle to be examined. This technique allows the needle motion to be determined in situ at the needle seat and requires no modifications to the injector hardware, unlike conventional techniques. Measurements of the nozzle geometry have allowed the average nozzle diameter, degree of convergence or divergence, and the degree of rounding at the nozzle inlet to be examined. Measurements of the needle lift have shown that the lift behavior of all four nozzles consists of a linear increase in needle lift with respect to time until the needle reaches full lift and a linear decrease as the needle closes. For all four nozzles, the needle position oscillates at full lift with a period of 170–180 μs. The full-lift position of the needle changes as the rail pressure increases, perhaps reflecting compression of the injector components. Significant lateral motions were seen in the two single-hole nozzles, with the needle motion perpendicular to the injector axis resembling a circular motion for one nozzle and linear oscillation for the other nozzle. The two VCO multihole nozzles show much less lateral motion, with no strong oscillations visible.


2018 ◽  
Vol 143 ◽  
pp. 44-48 ◽  
Author(s):  
Zhonghe Huang ◽  
Leyun Wang ◽  
Bijin Zhou ◽  
Torben Fischer ◽  
Sangbong Yi ◽  
...  

1990 ◽  
Vol 217 ◽  
Author(s):  
J.H. Kinney ◽  
M.C. Nichols ◽  
U. Bonse ◽  
S.R. Stock ◽  
T.M. Breunig ◽  
...  

ABSTRACTA technique for nondestructively imaging microstructures of materials in situ, especially a technique capable of delineating the time evolution of chemical changes or damage, will greatly benefit studies of materials processing and failure. X-ray tomographic microscopy (XTM) is a high resolution, three-dimensional inspection method which is capable of imaging composite materials microstructures with a resolution of a few micrometers. Because XTM is nondestructive, it will be possible to examine materials under load or during processing, and obtain three-dimensional images of fiber positions, microcracks, and pores. This will allow direct imaging of microstructural evolution, and will provide time-dependent data for comparison to fracture mechanics and processing models.


Sign in / Sign up

Export Citation Format

Share Document