Cell morphologies, mechanical properties, and fiber orientation of glass fiber-reinforced polyamide composites: Influence of subcritical gas-laden pellet injection molding foaming technology

2022 ◽  
Vol 34 (1) ◽  
pp. 013101
Author(s):  
Huaguang Yang ◽  
Allen Jonathan Román ◽  
Tzu-Chuan Chang ◽  
Chenglong Yu ◽  
Jing Jiang ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 360 ◽  
Author(s):  
Hyun Kim ◽  
Joo Sohn ◽  
Youngjae Ryu ◽  
Shin Kim ◽  
Sung Cha

This study analyzes the fundamental principles and characteristics of the microcellular foaming process (MCP) to minimize warpage in glass fiber reinforced polymer (GFRP), which is typically worse than that of a solid polymer. In order to confirm the tendency for warpage and the improvement of this phenomenon according to the glass fiber content (GFC), two factors associated with the reduction of the shrinkage difference and the non-directionalized fiber orientation were set as variables. The shrinkage was measured in the flow direction and transverse direction, and it was confirmed that the shrinkage difference between these two directions is the cause of warpage of GFRP specimens. In addition, by applying the MCP to injection molding, it was confirmed that warpage was improved by reducing the shrinkage difference. To further confirm these results, the effects of cell formation on shrinkage and fiber orientation were investigated using scanning electron microscopy, micro-CT observation, and cell morphology analysis. The micro-CT observations revealed that the fiber orientation was non-directional for the MCP. Moreover, it was determined that the mechanical and thermal properties were improved, based on measurements of the impact strength, tensile strength, flexural strength, and deflection temperature for the MCP.


2018 ◽  
Vol 37 (15) ◽  
pp. 1020-1034 ◽  
Author(s):  
Christoph Lohr ◽  
Björn Beck ◽  
Frank Henning ◽  
Kay André Weidenmann ◽  
Peter Elsner

The MuCell process is a special injection molding process which utilizes supercritical gas (nitrogen) to create integral foam sandwiches. The advantages are lower weight, higher specific properties and shorter cycle times. In this study, a series of glass fiber-reinforced polyphenylene sulfide foam blanks are manufactured using the MuCell injection molding process. The different variations of the process (low-pressure also known as structural foam injection molding) and high-pressure foam injection molding (also known as “core back expansion,” “breathing mold,” “precision opening,” decompression molding) are used. The sandwich structure and mechanical properties (tensile strength, bending strength, and impact behavior) of the microcellular and glass fiber-reinforced polyphenylene sulfide foams are systematically investigated and compared to compact material. The results showed that the injection parameters (injection speed, foaming mechanism) played an important role in the relative density of microcellular polyphenylene sulfide foams and the mechanical properties. It could be shown that the specific tensile strength decreased while increasing the degree of foaming which can be explained by the increased number of cells and the resulting cell size. This leads to stress peaks which lower the mechanical properties. The Charpy impact strength shows a significant dependence on the fiber orientation. The specific bending modulus of the high-pressure foaming process, however, surpasses the values of the other two processes showing the potential of this manufacturing variation especially with regard to bending loads. Furthermore, a high dependence of the mechanical properties on the fiber orientation of the tested specimens can be found.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2555-2560 ◽  
Author(s):  
KAZUTO TANAKA ◽  
TSUTAO KATAYAMA ◽  
TATSUYA TANAKA ◽  
AKIHIRO ANGURI

During an injection molding of composite materials, fiber attrition occurs and the average fiber length is reduced. In order to control the breakage of fibers and degradation of mechanical properties during processing, Flat glass Fiber (FF), that has oval cross-section shape, has been developed to use for glass fiber reinforced thermoplastic (GFRTP). Using FF as reinforcement of GFRTP has advantages as following: (1) Fluidity of FF is better than conventional Normal glass Fiber (NF) with 'circular' cross-section; (2) Fiber breakage during the injection molding process using FF is smaller than that using NF. In this study, the mechanical properties of FF and NF were compared for reinforcement of long fiber thermoplastics pellets (LFT pellets). We have also investigated the effect of screw design on fiber damage and the mechanical properties. The mechanical properties of specimens molded by FF reinforcement LFT (FF-LFT) pellets were superior to these of NF reinforcement LFT (NF-LFT) pellets. The former could give composites with higher fluidity and longer residual fiber length. Moreover, FF was able to strengthen injection-molded samples with higher fiber content than NF. Low shear type screw was effective to prevent the fiber attrition during plasticization process, hence leads to better mechanical properties of GFRTP


Sign in / Sign up

Export Citation Format

Share Document