In vitro study of cataract extraction by bursts of microsecond 1.54-mm laser pulses

2022 ◽  
Vol 52 (1) ◽  
pp. 69-77
Author(s):  
A V Belikov ◽  
S N Smirnov ◽  
Yu N Batov ◽  
A B Gubin ◽  
Yu B Pirozhkov ◽  
...  

Abstract Laser extraction of a model porcine eye cataract has been performed for the first time in an in vitro experiment using a 1.54-μm Yb,Er : glass laser generating bursts of microsecond pulses. We used effective pulse repetition rates from 36 to 75 Hz and average laser output powers from 3.9 to 5.25 W. The results demonstrate for the first time that, at an effective pulse repetition rate of 45 Hz, burst repetition rate of 15 Hz, three microsecond pulses per burst, and a burst energy from 260 to 265 mJ, the laser step duration in cataract extraction is 130 plusmn; 10 s, which is comparable to the ultrasonic phacoemulsification and laser extraction time in the case of a Nd : YAG laser emitting at 1.44 μm. Acoustometry and high speed video recording of hydroacoustic processes accompanying interaction of water with 1.54-μm radiation from the Yb, Er : glass laser generating bursts of microsecond pulses have made it possible for the first time to detect overlap of hydroacoustic processes at the pulse spacing in bursts reduced to under 700 μs. In the case of overlap of hydroacoustic processes, despite the increase in average power and effective pulse repetition rate, acoustic wave generation is ineffective because pulses propagate through bubbles formed in the water. Laser cataract extraction is shown to be most effective at a lower average power, lower effective pulse repetition rate, and burst pulse spacing of 850 ± 10 μs.

2013 ◽  
Vol 43 (7) ◽  
pp. 597-599 ◽  
Author(s):  
A A Kuzmin ◽  
O V Kulagin ◽  
Efim A Khazanov ◽  
A A Shaykin

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 232
Author(s):  
Luka Hribar ◽  
Peter Gregorčič ◽  
Matej Senegačnik ◽  
Matija Jezeršek

In this paper, we investigate the influence of the following parameters: pulse duration, pulse repetition rate, line-to-line and pulse-to-pulse overlaps, and scanning strategy on the ablation of AISI 316L steel and CuZn37 brass with a nanosecond, 1064-nm, Yb fiber laser. The results show that the material removal rate (MRR) increases monotonically with pulse duration up to the characteristic repetition rate (f0) where pulse energy and average power are maximal. The maximum MRR is reached at a repetition rate that is equal or slightly higher as f0. The exact value depends on the correlation between the fluence of the laser pulses and the pulse repetition rate, as well as on the material properties of the sample. The results show that shielding of the laser beam by plasma and ejected material plays an important role in reducing the MRR. The surface roughness is mainly influenced by the line-to-line and the pulse-to-pulse overlaps, where larger overlap leads to lower roughness. Process optimization indicates that while operating with laser processing parameters resulting in the highest MRR, the best ratio between the MRR and surface roughness appears at ~50% overlap of the laser pulses, regardless of the material being processed.


Sign in / Sign up

Export Citation Format

Share Document