The effect of nitrate supplementation on arterial blood gases, haemoglobin fractions and heart rate in Bos indicus cattle after exercise

2018 ◽  
Vol 58 (9) ◽  
pp. 1603 ◽  
Author(s):  
I. Benu ◽  
L. A. Fitzpatrick ◽  
M. J. Callaghan ◽  
N. Tomkins ◽  
A. J. Parker

The objective of this study was to investigate the effects of nitrate treatment on the arterial blood gas and haemoglobin fractions from Bos indicus steers after exercise. Bos indicus steers (n = 12; mean bodyweight ± s.e.m., 397 kg ± 10.84 kg) were used in this experiment to investigate the effects of three dose rates of nitrate salts (0, 30 or 50 g of nitrate/day) on arterial blood gases, methaemoglobin concentration, carboxyhaemoglobin concentration, oxyhaemoglobin concentration, total haemoglobin concentration, haematocrit, heart rate, and respiratory rate after exercise. Increasing the dose rate of nitrate resulted in a decrease in the partial pressure of oxygen (P = 0.004) in blood. Steers treated with 50 g nitrate/day had a decrease in oxyhaemoglobin concentration (P = 0.001) and a concomitant increase in methaemoglobin (P = 0.001) and carboxyhaemoglobin (P = 0.001) compared with steers treated with 0 or 30 g nitrate/day. Steers dosed with 50 g of nitrate had greater heart rates immediately after the exercise regimen compared with the steers dosed with 30 g of nitrate (P = 0.043) or no nitrate (P = 0.018). There was no difference between treatments for respiratory rate (P = 0.673) or rectal temperature (P = 0.207) after the exercise regimen. Feeding nitrate to Bos indicus cattle results in a decrease in the oxygen carrying capacity of their blood. It is likely that doses of nitrate greater than 50 g per day for this class of animal could induce hypoxaemic trauma if cattle have exercise imposed after consuming a nitrate supplement.

1994 ◽  
Vol 3 (5) ◽  
pp. 353-355 ◽  
Author(s):  
ML Noll ◽  
JF Byers

Correlations of mixed venous and arterial oxygen saturation, heart rate, respiratory rate, and mean arterial pressure with arterial blood gas variables were computed for 57 sets of data obtained from 30 postoperative coronary artery bypass graft patients who were being weaned from mechanical ventilation. Arterial oxygen saturation and respiratory rate correlated significantly, although moderately, with blood gases.


Arterial blood gas (ABGs) analysis forms the cornerstone of emergency respiratory investigation. In many situations values obtained dictate management strategy and facilitate decision-making. It is an uncomfortable procedure for the patients and if repeated ABGs are required, consider whether less invasive measures, such as respiratory rate, pulse oximetry or capillary blood gas measurements could be used....


1986 ◽  
Vol 9 (6) ◽  
pp. 427-432 ◽  
Author(s):  
R. Fumagalli ◽  
T. Kolobow ◽  
P. Arosio ◽  
V. Chen ◽  
D.K. Buckhold ◽  
...  

A total of 44 preterm fetal lambs at great risk of developing respiratory failure were delivered by Cesarean section, and were then managed on conventional mechanical pulmonary ventilation. Fifteen animals initially fared well, and 14 of these were long term survivors. Twenty-nine other lambs showed a progressive deterioration in arterial blood gases within 30 minutes of delivery, of which 10 lambs were continued on mechanical pulmonary ventilation (20% survival), while the remaining 19 lambs were placed on an extracorporeal membrane lung respiratory assist (79% survival). Extracorporeal membrane lung bypass rapidly corrected arterial blood gas values, and permitted the use of high levels of CPAP instead of the continuation of mechanical pulmonary ventilation at high peak airway pressures. Improvement in lung function was gradual, and predictable. Early institution of extracorporeal respiratory assist using a membrane artificial lung rapidly corrected arterial blood gas values and significantly improved on neonate survival.


1986 ◽  
Vol 61 (3) ◽  
pp. 1192-1194 ◽  
Author(s):  
J. D. Wood ◽  
N. L. Herman ◽  
D. R. Kostreva

Rats were effectively ventilated with 100% O2 mixed with room air utilizing a modified tracheostomy tube and a Bird Mark 7 respirator to maintain arterial blood gases within normal limits. A 3-cm segment of rubber pilot tubing was attached to a 15-mm respiratory connector and a 3-cm piece of polyethylene catheter tubing was fitted snugly into the other end. The catheter was inserted and secured into the trachea of 250- to 500-g Sprague-Dawley rats with the adaptor hose of the respirator fitted onto the 15-mm connector following tracheostomy. Manometer and inspiratory flow rate controls of the respirator were set to their minimum operating position. Appropriate rate control adjustments were made when necessary as determined by arterial blood gas measurements. By use of the above ventilation system, adequate arterial blood gases of anesthesized rats can be maintained for greater than 3 h.


2006 ◽  
Vol 36 (5) ◽  
pp. 1444-1449
Author(s):  
Cláudio Corrêa Natalini ◽  
Renata Lehn Linardi ◽  
Alexandre da Silva Polydoro

The study was done to compare the heart rate, arterial blood pressure, arterial blood gases, respiratory rate, body temperature, and behavior after subarachnoid administration of hyperbaric morphine (MorphineD10), buprenorphine (BuprenorphineD10), methadone (Methadone D10), and 10% dextrose (D10) in conscious horses. Six adult horses were studied. Treatments were administered into the lombo-sacral subarachnoid space through an epidural catheter, MorphineD10 at 0.01mg kg-1, BuprenorphineD10 at 0.001mg kg-1, MethadoneD10 at 0.01mg kg-1, and 10% dextrose as a control group. The results showed that there are minimum changes in heart and respiratory rate, blood gases, blood pressure, and body temperature after subarachnoid administration of hyperbaric opioids in horses. No sedation and nor motor impairment or behavioral changes occur.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ovidiu Roşu ◽  
Iulia Melega ◽  
Alina L. Evans ◽  
Jon M. Arnemo ◽  
Susanne Küker

Feral horses are immobilized for a variety of reasons including population control via contraceptives. Although opioid combinations have been successfully used for immobilization of feral horses, there is a need for combinations using drugs that are more readily available and present less of a human health hazard. We evaluated the chemical immobilization with physiological measurements and blood gas analyses of 91 free-ranging feral horses (Equus ferus caballus) remotely immobilized with a combination of 30 mg medetomidine and 775 mg ketamine in a single disposable 6 ml dart. During immobilization, heart rate, respiratory rate, rectal temperature, capillary refill time and peripheral oxygen hemoglobin saturation (SpO2) were evaluated. In eight horses, arterial blood samples were analyzed to evaluate the blood gases, acid-base status and hematologic variables. Targeted horses presented a wide range of age, size and body condition. Eighty-one horses had an uneventful mean induction of 7.2 min. Eighty-nine horses were immobilized in lateral recumbency with good muscle relaxation and a median recumbency time of 67 min. Ten horses required supplemental ketamine intravenously (x̄ = 434 mg) due to incomplete immobilization. In 58 horses the effects of medetomidine were antagonized with atipamezole intravenously. Increased respiratory rate (>20 breaths/min), increased heart rate (>45 beats/min) and decreased SpO2 < 90% were noted in more than half of the individuals, while increased rectal temperature (>39.0°C) was recorded in six animals. Blood parameters showed hypoxemia (<90 mmHg, n = 8), hypercapnia (>45 mmHg, n = 5), high glucose levels (>134 mmol/L, n = 3), increased blood lactate (>1.5 mmol/L), total carbon dioxide, bicarbonate and base excess which further increased in the second sample, whereas SpO2 and calcium values decreased. Recoveries were smooth, with one (n = 86) or more (n = 5) attempts of standing. Eighty-nine recoveries were uneventful, besides one male that showed signs of monoparesis of the left front leg and one mare with signs consistent with exertional myopathy. In conclusion, medetomidine-ketamine provided a reliable immobilization in feral horses over a wide range of body mass and age. However, based on the observed hypoxemia during immobilization, oxygen supplementation is strongly recommended for this protocol.


PEDIATRICS ◽  
1950 ◽  
Vol 6 (4) ◽  
pp. 557-572
Author(s):  
DONALD E. CASSELS ◽  
MINERVA MORSE ◽  
W. E. ADAMS

The effect of the patent ductus arteriosus on the circulation and on the arterial blood gases and pHs has been studied. The pulmonary blood flow diminished 19.6 to 61.8% following ligation in 12 cases examined. The blood volume diminished following closure of the ductus in most cases. Likewise, the heart rate lessened and the pulse pressure was lower after surgery. Arterial oxygen saturation was low preoperatively in some cases and in most instances postoperatively, and this low value sometimes persisted. Some aspects of the data presented have been discussed in detail.


Author(s):  
Yiannis Papachatzakis ◽  
Pantelis Theodoros Nikolaidis ◽  
Sofoklis Kontogiannis ◽  
Georgia Trakada

High-flow oxygen through nasal cannula (HFNC) provides adequate oxygenation and can be an alternative to noninvasive ventilation (NIV) for patients with hypoxemic respiratory failure. The aim of the present study was to assess the efficacy of HFNC versus NIV in hypercapnic respiratory failure. Patients (n = 40) who were admitted to the Emergency Department of Alexandra Hospital due to hypercapnic respiratory failure (PaCO2 ≥ 45 mmHg) were randomized assigned into two groups, i.e., an intervention group (use of HFNC, n = 20) and a control group (use of NIV, n = 20). During their hospitalization in the Intensive Care Unit, vital signs (respiratory and heart rate, arterial blood pressure) and arterial blood gases (ABG) were closely monitored on admission, after 24 h and at discharge. No difference between the two groups regarding the duration of hospitalization and the use of HFNC or NIV was observed (p > 0.05). On admission, the two groups did not differ in terms of gender, age, body mass index, APACHE score, predicted death rate, heart rate, arterial blood pressure and arterial blood gases (p > 0.05). Respiratory rate in the HFNC group was lower than in the NIV group (p = 0.023). At discharge, partial carbon dioxide arterial pressure (PaCO2) in the HFNC group was lower than in the NIV group (50.8 ± 9.4 mmHg versus 59.6 ± 13.9 mmHg, p = 0.024). The lowerPaCO2 in the HFNC group than in the NIV group indicated that HFNC was superior to NIV in the management of hypercapnic respiratory failure.


Sign in / Sign up

Export Citation Format

Share Document