scholarly journals Pre Prophase Microtubules and Stomatal Differentiation in Commelina Cy Anea

1969 ◽  
Vol 22 (2) ◽  
pp. 375 ◽  
Author(s):  
JD Pickett-Heaps

The relationship between preprophase microtubules and asymmetrical cell division in the formation of the stomatal complex of C. cyanea was investigated. Polarization of nuclei and other cell organelles adjacent to the guard mother cell occurred in most cases without a preprophase band of microtubules being present; the grouping of preprophase microtubules appeared immediately prior to cell division, and its situation, even during abnormal stomatal development, predicted the plane of future division. The results show that preprophase microtubules cannot be the cytoplasmic agents involved in orienting and positioning the nucleus prior to division. Clear evidence was obtained indicating that preprophase microtubules move intact into the spindle. Some aspects of abnormal stomatal development are discussed, and the results are related to some other work on stomatal differentiation.

1966 ◽  
Vol 1 (1) ◽  
pp. 121-128
Author(s):  
J. D. PICKETT-HEAPS ◽  
D. H. NORTHCOTE

During the formation of stomata in the young leaves of wheat the cells divide in a characteristic manner; two of the cell divisions are asymmetrical and produce cells of unequal sizes. A study of the fine structure of the cells during mitosis has shown that a band of microtubules appears at each preprophase stage. This band, although it is not present in the subsequent stages of mitosis, indicates the location on the wall of the mother cell where the cell plate will join it at the final division of the cytoplasm at telophase. Thus the future plane of cell division is indicated by these microtubules at preprophase. Microtubules are also found at the growing edge of the cell plate and appear to function in directing the vesicles which are brought up to extend the plate. The cell plate which is formed to cut off the subsidiary cells on either side of the guard mother cell is curved, and the microtubules present in conjunction with this plate during its formation could function to align and hold it on the required position. The relationship of the guard mother cell to the divisions of the adjacent epidermal cells which form the subsidiary cells is discussed, and related to general problems of growth and differentiation.


1991 ◽  
Vol 39 (1) ◽  
pp. 43 ◽  
Author(s):  
DJ Carr ◽  
SGM Carr

The mode of stomatal development is studied in cotyledons, seedling and adult leaves of species of eucalypts and three species of Angophora. In the cotyledons of all species examined the early stomatal initials are unilabrate or dolabrate. The stomatal initials in seedling leaves of species of the Corymbosae and Clavigerae are anisocytic. In the 4th seedling leaf in species of a group we have previously called Monocalyptus the stomatal initials are also anisocytic. All other eucalypts retain the early cotyledonary mode of origin of stomata throughout life. These two modes of origin, whether anisocytic or by unilabrate and dolabrate initials, are set in all eucalypts from the 4th seedling leaf onward. Secondary characteristics of the adult stomata, e.g. number of subsidiary cells, are more complex than those of the seedling leaves; rarely, the relatively simple pattern of the seedling leaves may persist in the adult leaves of a given species. In species in which the initials in adult leaves are unilabrate or dolabrate, groups of stomata may share one or more subsidiary cells or be juxtaposed without an intervening subsidiary cell. The sister cell(s) of the guard mother cell may precociously develop a thicker cuticle than ordinary epidermal cells, and this may be apparent at maturity. The abaxial stomata of the cotyledons (but not of seedling or adult leaves) are regularly aligned parallel to the main venation. The existence of three main types of origin of stomata characteristic of three large non-interbreeding groups of eucalypts is of interest in the taxonomy of the genus.


2020 ◽  
Author(s):  
Xiaoyu Guo ◽  
Chan Ho Park ◽  
Zhi-Yong Wang ◽  
Bryce E. Nickels ◽  
Juan Dong

SummaryAsymmetric cell division (ACD) often requires protein polarization in the mother cell to produce daughter cells with distinct identities (“cell-fate asymmetry”). Here, we define a previously undocumented mechanism for establishing cell-fate asymmetry in Arabidopsis stomatal stem cells. In particular, we show that polarization of BSL protein phosphatases promotes stomatal ACD by establishing a “kinase-based signaling asymmetry” in the two daughter cells. BSL polarization in the stomatal ACD mother cell is triggered upon commitment to cell division. Polarized BSL is inherited by the differentiating daughter cell where it suppresses cell division and promotes cell-fate determination. Plants lacking BSL exhibit stomatal over-proliferation, demonstrating BSL plays an essential role in stomatal development. Our findings establish that BSL polarization provides a spatiotemporal molecular switch that enables cell-fate asymmetry in stomatal ACD daughter cells. We propose BSL polarization is triggered by an ACD “checkpoint” in the mother cell that monitors establishment of division-plane asymmetry.


1989 ◽  
Vol 92 (4) ◽  
pp. 581-594
Author(s):  
SOON-OK CHO ◽  
SUSAN M. WICK

The changing orientation of microtubules (MTs) during formation of the stomatal complex in grasses was observed by immunofluorescence microscopy, beginning with the asymmetrical division of the cell that gives rise to the guard cell mother cell, i.e. the guard cell grandmother cell. The asymmetrically placed preprophase band (PPB) of guard cell grandmother cells and hair cell mother cells is always laid down parallel to the distal end wall even when this wall is oblique to the long axis of the cell. The first step in formation of the PPB of a subsidiary cell mother cell appears to be establishment of an incomplete band of MTs. Whereas the mature PPB forms a curved line in a face view of a subsidiary cell mother cell, in this early stage MTs form fan-shaped arrays that focus on two points along the edge of the subsidiary cell mother cell. Replacement of the transversely oriented interphase microtubule band of the guard cell mother cell with the longitudinally oriented PPB involves several distinctive stages: (1) appearance of MTs directed toward the centre of the periclinal surface along the entire length of the lateral walls. (2) Appearance of another set of MTs along the entire width of both end walls, likewise focused toward the centre of the periclinal surface. Together these two groups of MTs form a cross with broadened tips in face view of the leaf. (3) Disappearance of the first set of MTs, and formation of an increasingly narrow band from the latter at the site of future cytokinesis. Although the anaphase spindles of guard cell grandmother cells, hair cell mother cells and guard cell mother cells are usually diagonally oriented relative to the site occupied previously by the PPB, the line connecting the centres of the spindle poles that are established at prophase is perpendicular to the persisting PPBs. Unlike the situation in certain other hair cells, MTs in leaf hair cells are transversely oriented even when the cells are highly elongated.


1968 ◽  
Vol 16 (2) ◽  
pp. 177 ◽  
Author(s):  
A Mahmood

The use of the term cambium, or equivalent terms, in modern literature is discussed. The term cambial zone adopted in this paper includes the cambial initial and the dividing and enlarging cells. The tissue mother cell produced at each division of the initial produces a group of four cells in xylem or two cells in phloem. Theoretical constructs have been made for xylem and phloem production by associating the concepts that xylem and phloem are produced in alternate series of initial divisions and that a new primary wall is deposited around each daughter protoplast at each cell division. Correlations are derived from the theoretical constructs for the thickness of primary wall layers lying in the tangential direction and of those lying in the radial direction at progressive histological levels. Deductions from theoretical constructs are made when the initial is producing xylem, when it changes its polarity from xylem to phloem production, and when the reverse change occurs. Most of the theoretical deductions are supported by photographic evidence. The chief point of this study is the demonstration of generations (multiplicity) of primary parental walls. The term intercellular material proposed in this paper includes the cell plate plus any remnants of ancestral primary walls between the current primary walls surrounding the adjacent protoplasts. This term is still applicable to cells where secondary wall deposition is taking place or has been completed.


1992 ◽  
Vol 103 (4) ◽  
pp. 989-998 ◽  
Author(s):  
E.P. Eleftheriou ◽  
B.A. Palevitz

The relationship between microfilaments (Mfs) and microtubules (Mts) in the organization of the preprophase band (PPB) was investigated in Allium root tip cells subjected to treatment with cytochalasin D (CD). Mts and Mfs were visualized by indirect immunofluorescence and various parameters such as PPB width were analyzed quantitatively. In control samples, the PPB first appears as a wide Mt band that progressively narrows to an average width of 4 micrometre in mid-prophase. Randomly oriented Mfs are present throughout the cytoplasm of most interphase control cells. Preprophase and prophase cells, however, contain cortical Mfs arranged parallel to the PPB. The Mfs initially occupy much of the cortex but in most cells they progressively become restricted to an area wider than the PPB. In the presence of CD, the PPB fails to narrow and remains at least two-fold wider than in control cells. PPB width expressed as a percentage of nuclear or cell length also increases compared to controls. Widening is concentration dependent, and the effect of 10 micromolar CD is near maximal only 15 min after application of the drug. This rapid response suggests that a rebroadening of already condensed PPBs takes place. After as little as 15 min in CD, Mfs are replaced by many small specks and rods. Dual localizations of both Mts and Mfs show that prophase cells contain broad PPBs without Mfs. The rapid disorganization of Mfs, by CD, therefore coincides with the rebroadening of PPBs. CD-treated cells in metaphase, anaphase and telophase contain larger actin aggregates at the poles, as previously reported. The results indicate that Mfs play an important role in the narrowing of the PPB, which in turn is essential for determination of the exact position of the plane of division. They also indicate that movement of intact Mts is important in PPB organization.


Development ◽  
1999 ◽  
Vol 126 (20) ◽  
pp. 4623-4633 ◽  
Author(s):  
K. Gallagher ◽  
L.G. Smith

In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.


1995 ◽  
Vol 43 (10) ◽  
pp. 1079-1084 ◽  
Author(s):  
G Thiéry ◽  
J Bernier ◽  
M Bergeron

We describe a simple new technique based on the affinity of imidazole and osmium tetroxide for unsaturated lipids. Organs (e.g., kidney, liver, intestine) were perfused in vivo with a glutaraldehyde solution. Tissue fragments were then immersed in a solution containing imidazole and OsO4 and are further stained with a double lead and copper citrate solution. Ultra-thin (0.06 microns) or thick (0.1-0.3 microns) sections were observed with transmission electron microscopy (80-100 kV). The method presented permits excellent visualization of cell membranes (e.g., endoplasmic reticulum, endocytotic apparatus) because it favors good resin penetration and the alkaline pH preserves cell volume. A better stereomicroscopic analysis of the relationship between cell organelles can be carried out with thick sections. The imidazole/osmium can be used routinely because the technical steps are easy and simple to follow. Furthermore, it can complement other cytochemical methods.


Sign in / Sign up

Export Citation Format

Share Document