Environmental factors affect seed germination and seedling emergence of invasive Centaurea balsamita

2017 ◽  
Vol 68 (6) ◽  
pp. 583 ◽  
Author(s):  
Iraj Nosratti ◽  
Samira Soltanabadi ◽  
Saeid J. Honarmand ◽  
Bhagirath S. Chauhan

Centaurea balsamita is a problematic and invasive weed of agricultural fields in western Iran. This study was conducted to determine the effect of different environmental factors on germination and seedling emergence of this weed species. Results revealed that seed germination occurred over a wide range of temperatures (from 5°C to 35°C) with the highest germination at 25°C. Seed germination of C. balsamita was similar between light and dark conditions. Germination decreased with increased in water stress levels, but some seeds were capable of germinating at –1.4 MPa osmotic potential. Seed germination was sensitive to salt stress and complete inhibition occurred at 150 mM sodium chloride. Seed germination of C. balsamita occurred over a pH range of 4–10 with lowest seed germination at pH 4. Seed germination was inhibited by increasing concentrations of potassium nitrate. No seedlings emerged when seeds were buried in the soil at depths greater than 6 cm, suggesting that using a sweep cultivator in crops and deep tillage would be beneficial in managing C. balsamita. The ability of C. balsamita to germinate under a wide range of temperature regimes and high levels of osmotic potential shows that this weed is well adapted to invade other cropping regions, especially rain-fed fields in western Iran.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1123
Author(s):  
Shahid Farooq ◽  
Huseyin Onen ◽  
Sonnur Tad ◽  
Cumali Ozaslan ◽  
Samy F. Mahmoud ◽  
...  

Polygonum perfoliatum L. is an aggressive vine, currently invading the Black Sea region, Turkey. However, information about the seed germination biology of this species is scanty. The objective of the current study was to determine the seed germination biology of three naturalized populations of this species. Chemical scarification with 98% sulfuric acid for 30 min followed by cold-wet stratification at 4 °C for 4 weeks effectively released seed dormancy in tested populations. Seeds of all populations required a 12 h photoperiod for the highest germination, while germination under continuous dark and light remained similar. The seeds were able to germinate under a wide range of constant (5–40 °C) and alternating temperatures, pH (3–11), osmotic potential (0 to −1.4 MPa) and salinity (0–500 mM NaCl). However, the peak germination was observed under 20 °C constant and 20/15 °C alternating day/night temperature, and pH 6.8. Seeds of all populations were able to withstand 200 mM salinity and −0.6 MPa osmotic potential. Increasing seed burial depth initially stimulated seedling emergence and then a sharp decline was observed for the seeds buried below >2 cm depth. More than 90% of the seeds were unable to emerge when buried >6 cm depth. Polygonum perfoliatum has a large potential for range expansion; therefore, immediate management of the naturalized populations is warranted. This weed species in agricultural fields can be managed by burying the seeds in deeper soil layers (6 cm), while post-emergence management strategies need to be developed for roadside populations.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244059
Author(s):  
Safdar Ali ◽  
Fakhar Din Khan ◽  
Rehmat Ullah ◽  
Rahmat Ullah Shah ◽  
Saud Alamri ◽  
...  

Numerous cropping systems of the world are experiencing the emergence of new weed species in response to conservation agriculture. Conyza stricta Willd. is being a newly emerging weed of barley-based cropping systems in response to conservational tillage practices. Seed germination ecology of four populations (irrigated, rainfed, abandoned and ruderal habitats) was studied in laboratory and greenhouse experiments. The presence/absence of seed dormancy was inferred first, which indicated seeds were non-dormant. Seed germination was then recorded under various photoperiods, constant and alternating day/night temperatures, and pH, salinity and osmotic potential levels. Seedling emergence was observed from various seed burial depths. Seeds of all populations proved photoblastic and required 12-hour light/dark period for germination. Seeds of all populations germinated under 5–30°C constant temperature; however, peak germination was recorded under 17.22–18.11°C. Nonetheless, the highest germination was noted under 20/15°C alternating day/night temperature. Ruderal and irrigated populations better tolerated salinity and germinated under 0–500 mM salinity. Similarly, rainfed population proved more tolerant to osmotic potential than other populations. Seeds of all populations required neutral pH for the highest germination, whereas decline was noted in germination under basic and alkaline pH. Seedling emergence was retarded for seeds buried >2 cm depth and no emergence was recorded from >4 cm depth. These results add valuable information towards our understanding of seed germination ecology of C. stricta. Seed germination ability of different populations under diverse environmental conditions suspects that the species can present severe challenges in future if not managed. Deep seed burial along with effective management of the emerging seedlings seems a pragmatic option to manage the species in cultivated fields. However, immediate management strategies are needed for rest of the habitats.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
RC. XIONG ◽  
Y. MA ◽  
HW. WU ◽  
WL. JIANG ◽  
XY. MA

ABSTRACT: Velvetleaf, an annual broadleaf weed, is a common and troublesome weed of cropping systems worldwide. Laboratory and field experiments were conducted to determine the effects of environmental factors on germination and emergence of velvetleaf. Seeds germinated over a range of constant temperatures from 10 to 40 oC regardless of light conditions, but no germination occurred at temperature below 5 oC and beyond 50 oC. Seeds germinated at alternating temperature regimes of 15/5 to 40/30 oC, with maximum germination (>90%) at alternating temperatures of 40/30 oC. Germination was sensitive to water stress, and only 0.4% of the seeds germinated at the osmotic potential of -0.4 MPa. There was no germination at ? 0.6 MPa. Moreover, germination was reduced by saline and alkaline stresses and no germination occurred at ³ 150 mM NaCl or ³ 200 mM NaHCO3 concentrations. However, pH values from 5 to 9 had no effect on seed germination. Seedling emergence was significantly affected by burial depth and maximum emergence (78.1-85.6%) occurred at the 1-4 cm depth. The results of this study have contributed to our understanding of the germination and emergence of velvetleaf and should enhance our ability to improve control strategies in cropping systems in central China.


Weed Science ◽  
2019 ◽  
Vol 67 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Iraj Nosratti ◽  
Sajad Almaleki ◽  
Bhagirath S. Chauhan

AbstractSoldier thistle [Picnomon acarna(L.) Cass.] is widely distributed throughout rainfed fields across western Iran, where it decreases crop yields and interferes with harvest operations. This study was conducted to determine the influence of different factors on seed germination and seedling emergence ofP. acarna. Freshly harvested seeds were dormant and required an after-ripening period for breaking dormancy. Seed germination was greatly promoted by light. Germination occurred over a wide spectrum of constant and fluctuating temperature regimes, ranging from 5 to 35 C, with highest germination at constant (74%) and fluctuating (94%) temperatures of 20 and 20/10 C. Seed germination ofP. acarnawas tolerant to osmotic potential, while salt stress significantly inhibited its germination percentage. pH was not an inhibiting factor for germination ofP. acarnaseeds. Seedling emergence decreased exponentially with an increase in seed burial depth in the soil; at soil burial depths of 4 cm or greater, no seedlings were able to reach the soil surface. The results suggest that significant seed germination ofP. acarnain rainfed fields is possible, and the weed has great potential to spread throughout rainfed systems in western Iran. Based on these results, effective control ofP. acarnacan be achieved by applying interrow cultivation in row crops and deep tillage at seedbed preparation.


2018 ◽  
Vol 36 ◽  
Author(s):  
M. REZVANI ◽  
S.A. SADATIAN ◽  
H. NIKKHAHKOUCHAKSARAEI

ABSTRACT: Our knowledge about seed dormancy breaking and environmental factors affecting seed germination of greater bur-parsley (Turgenia latifolia) is restricted. This study has addressed some seed dormancy breaking techniques, including different concentrations of gibberellic acid (GA3) and potassium nitrate (KNO3), leaching duration, physical scarification as well as some environmental factors effective on seed germination such as salt and drought stresses, pH and seed planting depth. Seed germination was promoted with lower concentrations of KNO3 (0.01 to 0.02 g L-1), while higher concentrations reduced germination percentage. Seed dormancy was declined by low concentrations of GA3 up to 100 ppm. Seeds of greater bur-parsley germinated in a range of pH from 3 to 7. With enhancement of drought and salt stresses, seed germination decreased. Also, there was no seed germination in a high level of stresses. Seedling emergence reduced as planting depth increased. Use of GA3, KNO3, leaching and physical scarification had a positive effect on seed dormancy breaking of greater bur-parsley. The information from the study increases our knowledge about seed dormancy breaking techniques, response of germination to drought and salt stresses and also determination of distribution regions of greater bur-parsley in the future.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 521-525 ◽  
Author(s):  
Shouhui Wei ◽  
Chaoxian Zhang ◽  
Xiangju Li ◽  
Hailan Cui ◽  
Hongjuan Huang ◽  
...  

Buffalobur is a noxious and invasive weed species native to North America. The influence of environmental factors on seed germination and seedling emergence of buffalobur were evaluated in laboratory and greenhouse experiments. The germination of buffalobur seeds occurred at temperatures ranging from 12.5 to 45 C, with optimum germination attained between 25 and 35 C. Buffalobur seeds germinated equally well under both a 14-h photoperiod and continuous darkness; however, prolonged light exposure (≥ 16 h) significantly inhibited the seed germination. Buffalobur seed is rather tolerant to low water potential and high salt stress, as germination was 28 and 52% at osmotic potentials of −1.1 MPa and salinity level of 160 mM, respectively. Medium pH has no significant effect on seed germination; germination was greater than 95% over a broad pH range from 3 to 10. Seedling emergence was higher (85%) for seeds buried at a soil depth of 2 cm than for those placed on the soil surface (32%), but no seedlings emerged when burial depth reached 8 cm. Knowledge of germination biology of buffalobur obtained in this study will be useful in predicting the potential distribution area and developing effective management strategies for this species.


2020 ◽  
Vol 38 ◽  
Author(s):  
A. SIAHMARGUEE ◽  
M. GORGANI ◽  
F. GHADERI-FAR ◽  
R. ASGARPOUR

ABSTRACT: Ivy-leaved morning-glory (Ipomoea hederacea Jacq.) is an exotic species that is becoming an increasing problem in soybean fields of Golestan province, Iran. Because little information is available on the biology of this weed species in Iran, experiments were conducted to investigate the effects of different factors on seed germination and emergence of Ivy-leaved morning-glory. Maximum germination occurred at constant temperature of 20 oC (82%) and alternating temperature of 15/25 oC (94%). Germination was reduced with increasing salinity and drought stresses. Sodium chloride concentration and osmotic potential that inhibited 50% maximum germination were -1.64 and -1.03 MPa, respectively. Acidity was a limiting factor for the germination, due to inhibiting effect of alkaline conditions on germination. However, the results showed that high temperature pretreatment >100 oC decreased seed germination. Germination decreased from 82 to 3% as temperature increased from 100 to 130 oC. There was no significant difference between seedling emergence in burial depths of 1 to 10 cm, but emergence reduced with increasing burial depth from 10 to 14 cm, and no seedling was emerged from a depth of 15 cm. The results of the flooding experiment also revealed that the seeds of this species are sensitive to this stress, so that emergence was 9% after 3 d flooding.


2019 ◽  
Vol 70 (9) ◽  
pp. 807
Author(s):  
A. Mobli ◽  
S. Mijani ◽  
A. Ghanbari ◽  
M. Rastgoo

Flax-leaf alyssum (Alyssum linifolium Steph. ex. Willd.) is a winter growing annual weed species widely distributed in many semi-arid cropping regions of Iran, especially in the Khorasan Razavi and East Azerbaijan provinces. The germination of two populations (one each from Khorasan Razavi and East Azerbaijan) of this weed was evaluated under different experimental conditions. Seeds of A. linifolium germinated over a wide range of day/night temperature regimes, with the highest germination percentage observed with a regimen of 20°C/10°C. Light was not required for germination for either population, and >70% seeds germinated under all photoperiods tested. Germination was affected by pH levels; seeds germinated over the pH range 4–9 and germination was maximum at pH 7. For the Khorasan Razavi and East Azerbaijan populations, ≥50% of seeds germinated at a water potential of –0.69 and –0.78 MPa and salinity of 12.64 and 11.7 dS m–1 respectively. Maximum seedling emergence occurred when seeds were slightly covered with soil, but emergence decreased with increasing depth of soil cover, with no emergence at depths >3 cm. These results indicate that A. linifolium germinates in a wide range of climatic conditions and could invade into new regions. Burying the seeds through tillage may reduce their emergence.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Iraj Nosratti ◽  
Sahar Amiri ◽  
Alireza Bagheri ◽  
Bhagirath Singh Chauhan

Foxtail sophora is a widely distributed problematic weed in western Iranian dryland farming systems. Little information is available on seed germination and seedling emergence of this weed species in response to environmental and agronomic factors. This study was conducted to address this knowledge gap. Maximum seed germination (80%) occurred at 25 C and decreased at lower temperatures (<1% at 5 C) or under fluctuating temperature regimes. Light and pH did not have any substantial effect on seed germination. Foxtail sophora was tolerant to osmotic stress and moderately tolerant to sodium chloride. It was tolerant to salinity and drought stress during germination, which suggests that the population of this weed may increase in western farmlands of Iran. No seedlings emerged when seeds were buried at depths greater than 6 cm, which indicates that minimum- and no-till systems would increase seedling emergence of this species. Therefore, using sweep cultivators would be beneficial in management of foxtail sophora seedlings in the drylands of west of Iran.


Sign in / Sign up

Export Citation Format

Share Document