scholarly journals Genetic diversity among wild and cultivated germplasm of the perennial pasture grass Phalaris aquatica, using DArTseq SNP marker analysis

2021 ◽  
Vol 72 (10) ◽  
pp. 823
Author(s):  
Washington J. Gapare ◽  
Andrzej Kilian ◽  
Alan V. Stewart ◽  
Kevin F. Smith ◽  
Richard A. Culvenor

Phalaris aquatica L. (phalaris) is a cool-season perennial grass originating from the Mediterranean Basin, north-west Africa and Middle Eastern regions that is used for livestock agriculture mainly in temperate areas with dry summers. It has been the subject of breeding programs in Australia, South America, New Zealand and the USA. Increased knowledge of relationships between wild and cultivated germplasm through use of molecular markers has the potential to facilitate future breeding gains. For this purpose, we conducted an analysis of P. aquatica by using 3905 polymorphic DArTseq SNP markers. Genetic diversity as measured by expected heterozygosity was similar for wild (HE = 0.14; n = 57) and cultivated (HE = 0.13; n = 37) accessions. Diversity in wild germplasm was generally continuous in nature, largely related to geographical location, with a division at the broadest scale into eastern and western clades, with more admixture in the western than the eastern clade. Structure analysis of wild germplasm indicated six subpopulations consistent with country of origin, with some admixture among subpopulations likely resulting from natural and human influences. There were nine subpopulations among wild and cultivated accessions combined. This population structure should be considered if genomic selection is applied in P. aquatica. Analysis of molecular variance indicated that 71% of the genetic variation occurred within subpopulations and 29% among subpopulations. Genetic distances were low among cultivated germplasm from most countries except the USA, which was more distinct. Evaluation of material from the US pool by breeding programs in other countries, and additional material from the less utilised eastern clade, may be worthwhile.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grimar Abdiel Perez ◽  
Pumipat Tongyoo ◽  
Julapark Chunwongse ◽  
Hans de Jong ◽  
Anucha Wongpraneekul ◽  
...  

AbstractThis study explored a germplasm collection consisting of 112 Luffa acutangula (ridge gourd) accessions, mainly from Thailand. A total of 2834 SNPs were used to establish population structure and underlying genetic diversity while exploring the fruit characteristics together with genetic information which would help in the selection of parental lines for a breeding program. The study found that the average polymorphism information content value of 0.288 which indicates a moderate genetic diversity for this L. acutangula germplasm. STRUCTURE analysis (ΔK at K = 6) allowed us to group the accessions into six subpopulations that corresponded well with the unrooted phylogenetic tree and principal coordinate analyses. When plotted, the STRUCTURE bars to the area of collection, we observed an admixed genotype from surrounding accessions and a geneflow confirmed by the value of FST = 0.137. AMOVA based on STRUCTURE clustering showed a low 12.83% variation between subpopulations that correspond well with the negative inbreeding coefficient value (FIS =  − 0.092) and low total fixation index (FIT = 0.057). There were distinguishing fruit shapes and length characteristics in specific accessions for each subpopulation. The genetic diversity and different fruit shapes in the L. acutangula germplasm could benefit the ridge gourd breeding programs to meet the demands and needs of consumers, farmers, and vegetable exporters such as increasing the yield of fruit by the fruit width but not by the fruit length to solve the problem of fruit breakage during exportation.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 676 ◽  
Author(s):  
Farahani ◽  
Maleki ◽  
Mehrabi ◽  
Kanouni ◽  
Scheben ◽  
...  

Characterization of genetic diversity, population structure, and linkage disequilibrium is a prerequisite for proper management of breeding programs and conservation of genetic resources. In this study, 186 chickpea genotypes, including advanced “Kabuli” breeding lines and Iranian landrace “Desi” chickpea genotypes, were genotyped using DArTseq-Based single nucleotide polymorphism (SNP) markers. Out of 3339 SNPs, 1152 markers with known chromosomal position were selected for genome diversity analysis. The number of mapped SNP markers varied from 52 (LG8) to 378 (LG4), with an average of 144 SNPs per linkage group. The chromosome size that was covered by SNPs varied from 16,236.36 kbp (LG8) to 67,923.99 kbp (LG5), while LG4 showed a higher number of SNPs, with an average of 6.56 SNPs per Mbp. Polymorphism information content (PIC) value of SNP markers ranged from 0.05 to 0.50, with an average of 0.32, while the markers on LG4, LG6, and LG8 showed higher mean PIC value than average. Unweighted neighbor joining cluster analysis and Bayesian-based model population structure grouped chickpea genotypes into four distinct clusters. Principal component analysis (PCoA) and discriminant analysis of principal component (DAPC) results were consistent with that of the cluster and population structure analysis. Linkage disequilibrium (LD) was extensive and LD decay in chickpea germplasm was relatively low. A few markers showed r2 ≥ 0.8, while 2961 pairs of markers showed complete LD (r2 = 1), and a huge LD block was observed on LG4. High genetic diversity and low kinship value between pairs of genotypes suggest the presence of a high genetic diversity among the studied chickpea genotypes. This study also demonstrates the efficiency of DArTseq-based SNP genotyping for large-scale genome analysis in chickpea. The genotypic markers provided in this study are useful for various association mapping studies when combined with phenotypic data of different traits, such as seed yield, abiotic, and biotic stresses, and therefore can be efficiently used in breeding programs to improve chickpea.


Genetika ◽  
2015 ◽  
Vol 47 (3) ◽  
pp. 885-900 ◽  
Author(s):  
Susana González-Pérez ◽  
Cristina Mallor ◽  
Ana Garcés-Claver ◽  
Fuencisla Merino ◽  
Alfredo Taboada ◽  
...  

Seventeen onion landraces from North-West Spain were evaluated using microsatellites markers. Eleven polymorphic markers identified 32 alleles in the whole collection, with an average of 2.9 alleles per locus. High values of observed (mean of 0.45) and expected heterozigosity (mean of 0.51) were detected for the majority of loci. Wright?s fixation index confirmed an excess of heterozygotes and a low level of inbreeding within the collection. Multivariate analyses revealed that Oimbra was the most distinctive genotype. The remaining 16 onion genotypes were in part assorted according to some morphological traits of bulbs. Pungency and solid soluble content highly varied among landraces and bulbs. Five landraces were classified as sweet, whereas 9 possessed medium pungency and 3 were recorded as pungent. This onion collection represents a useful source of genetic heterogeneity that might be exploited in breeding programs for the generation of new onion varieties that satisfy consumer demands.


Author(s):  
Somayeh Farahani ◽  
Mojdeh Maleki ◽  
Rahim Mehrabi ◽  
Homayoun Kanouni ◽  
Reza Talebi

Characterization of genetic diversity, population structure and linkage disequilibrium is prerequisite for proper management of breeding programs and conservation of genetic resources. In this study, 186 chickpea genotypes including advanced “Kabuli” breeding lines and Iranian landrace “Desi” chickpea genotypes were genotyped using DArTseq-Based SNP markers. Out of 3339 SNPs, 1152 markers with known chromosomal position were selected for genome diversity analysis. The number of mapped SNP markers varied from 52 (LG8) to 378 (LG4), with an average of 144 SNPs per linkage group. The chromosome size that covered by SNPs varied from 16236.36 kbp (LG8) to 67923.99 kbp (LG5), while LG4 showed higher number of SNPs, with an average of 6.56 SNPs per Mbp. Polymorphism information content (PIC) value of SNP markers ranged from 0.05 to 0.50, with an average of 0.32, while the markers on LG4, LG6 and LG8 showed higher mean PIC value than average. Un-weighted Neighbor Joining cluster analysis and Bayesian-based model population structure grouped chickpea genotypes into four distinct clusters. Principal component analysis (PCoA) and Discriminant Analysis of Principal Component (DAPC) results were consistent with that of the cluster and population structure analysis. Linkage disequilibrium (LD) was extensive and LD decay in chickpea germplasm was relatively low. A few markers showed r2≥0.8, while 2961 pairs of markers showed complete LD (r2=1) and a huge LD block was observed on LG4. High genetic diversity and low kinship value between pairs of genotypes suggesting the presence of a high genetic diversity among studied chickpea genotypes. This study also demonstrated the efficiency of DArTseq-based SNP genotyping for large scale genome analysis in chickpea. The genotypic markers provided in this study are useful for various association mapping studies when combined with phenotypic data of different traits such as seed yield, abiotic and biotic stresses and therefore can be efficiently used in breeding programs to improve chickpea.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ademola Aina ◽  
Ana Luísa Garcia-Oliveira ◽  
Christopher Ilori ◽  
Peter L. Chang ◽  
Muyideen Yusuf ◽  
...  

Abstract Background African Yam Bean (AYB) is an understudied and underutilized tuberous legume of tropical West and Central African origin. In these geographical regions, both seeds and tubers of AYB are important components of people’s diets and a potential target as a nutritional security crop. The understanding of the genetic diversity among AYB accessions is thus an important component for both conservation and potential breeding programs. Results In this study, 93 AYB accessions were obtained from the International Institute of Tropical Agriculture (IITA) genebank and genotyped using 3722 SNP markers based on Restriction site-Associated DNA sequencing (RAD-Seq). Genetic data was analysed using multiple clustering methods for better understanding the distribution of genetic diversity across the population. Substantial genetic variability was observed in the present set of AYB accessions and different methodologies demonstrated that these accessions are divided into three to four main groups. The accessions were also analysed for important agronomic traits and successfully associated with their genetic clusters where great majority of accessions shared a similar phenotype. Conclusions To our knowledge, this is the first study on predicting genotypic-phenotypic diversity relationship analysis in AYB. From a breeding perspective, we were able to identify specific diverse groups with precise phenotype such as seed or both seed and tuber yield purpose accessions. These results provide novel and important insights to support the utilization of this germplasm in AYB breeding programs.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 563 ◽  
Author(s):  
Monica Marilena Miazzi ◽  
Nunzio D’Agostino ◽  
Valentina di Rienzo ◽  
Pasquale Venerito ◽  
Vito Nicola Savino ◽  
...  

The investigation on the genetic diversity of grapevine germplasm is crucial for a more efficient use of grapevine genetic resources in light of changing environmental conditions. Here, we used simple sequence repeats (SSRs) coupled with single nucleotide polymorphism (SNP) markers to disclose grapevine genetic diversity of a collection of Apulian minor/neglected genotypes. Their relationships with national or international cultivars were also examined. Genetic diversity was investigated using 10 SSR markers and 1,178 SNPs generated by genotyping by sequencing (GBS). Based on the SSR data, the 128 genotypes were classified into six main genetic clusters. Twenty-four putative cases of synonymy and 2 of misnamings were detected. Ten “unknown” autochthonous genotypes did not show high similarity to Apulian, national, or international varieties. We took advantage of available GBS-derived SNP data points for only forty genotypes to better investigate the genetic distance among them, identify private SNP alleles, and divergent loci putatively under selection. Based on SNP alleles, two interesting gene pools of minor/neglected Apulian samples were identified. Genetic divergence was investigated by FST and allowed the detection of loci capable of differentiating the gene pools. Overall, this work emphasizes the need for recovering the untapped genetic variability that characterizes minor/neglected grapevine Apulian genotypes and the requirement to preserve and use more efficiently grapevine genetic resources in breeding programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeewan Pandey ◽  
Douglas C. Scheuring ◽  
Jeffrey W. Koym ◽  
Joseph Coombs ◽  
Richard G. Novy ◽  
...  

AbstractKnowledge regarding genetic diversity and population structure of breeding materials is essential for crop improvement. The Texas A&M University Potato Breeding Program has a collection of advanced clones selected and maintained in-vitro over a 40-year period. Little is known about its genetic makeup and usefulness for the current breeding program. In this study, 214 potato clones were genotyped with the Infinium Illumina 22 K V3 Potato Array. After filtering, a total of 10,106 single nucleotide polymorphic (SNP) markers were used for analysis. Heterozygosity varied by SNP, with an overall average of 0.59. Three groups of tetraploid clones primarily based on potato market classes, were detected using STRUCTURE software and confirmed by discriminant analysis of principal components. The highest coefficient of differentiation observed between the groups was 0.14. Signatures of selection were uncovered in genes controlling potato flesh and skin color, length of plant cycle and tuberization, and carbohydrate metabolism. A core set of 43 clones was obtained using Core Hunter 3 to develop a sub-collection that retains similar genetic diversity as the whole population, minimize redundancies, and facilitates long-term conservation of genetic resources. The comprehensive molecular characterization of our breeding clone bank collection contributes to understanding the genetic diversity of existing potato resources. This analysis could be applied to other breeding programs and assist in the selection of parents, fingerprinting, protection, and management of the breeding collections.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Baffour Badu-Apraku ◽  
Ana Luísa Garcia-Oliveira ◽  
César Daniel Petroli ◽  
Sarah Hearne ◽  
Samuel Adeyemi Adewale ◽  
...  

Abstract Background Assessment and effective utilization of genetic diversity in breeding programs is crucial for sustainable genetic improvement and rapid adaptation to changing breeding objectives. During the past two decades, the commercialization of the early and extra-early maturing cultivars has contributed to rapid expansion of maize into different agro-ecologies of sub-Saharan Africa (SSA) where maize has become an important component of the agricultural economy and played a vital role in food and nutritional security. The present study aimed at understanding the population structure and genetic variability among 439 early and extra-early maize inbred lines developed from three narrow-based and twenty-seven broad-based populations by the International Iinstitute of Tropical Agriculture Maize Improvement Program (IITA-MIP). These inbreds were genotyped using 9642 DArTseq-based single nucleotide polymorphism (SNP) markers distributed uniformly throughout the maize genome. Results About 40.8% SNP markers were found highly informative and exhibited polymorphic information content (PIC) greater than 0.25. The minor allele frequency and PIC ranged from 0.015 to 0.500 and 0.029 to 0.375, respectively. The STRUCTURE, neighbour-joining phylogenetic tree and principal coordinate analysis (PCoA) grouped the inbred lines into four major classes generally consistent with the selection history, ancestry and kernel colour of the inbreds but indicated a complex pattern of the genetic structure. The pattern of grouping of the lines based on the STRUCTURE analysis was in concordance with the results of the PCoA and suggested greater number of sub-populations (K = 10). Generally, the classification of the inbred lines into heterotic groups based on SNP markers was reasonably reliable and in agreement with defined heterotic groups of previously identified testers based on combining ability studies. Conclusions Complete understanding of potential heterotic groups would be difficult to portray by depending solely on molecular markers. Therefore, planned crosses involving representative testers from opposing heterotic groups would be required to refine the existing heterotic groups. It is anticipated that the present set of inbreds could contribute new beneficial alleles for population improvement, development of hybrids and lines with potential to strengthen future breeding programs. Results of this study would help breeders in formulating breeding strategies for genetic enhancement and sustainable maize production in SSA.


2020 ◽  
Author(s):  
Grimar Abdiel Perez ◽  
Pumipat Tongyoo ◽  
Julapark Chunwongse ◽  
Hans de Jong ◽  
Paweena Chuenwarin

AbstractThis study explored a germplasm consisting of 112 Luffa acutangula (ridge gourd) accessions mainly from Thailand, and some accessions from Vietnam, China, Philippines, Indonesia, USA, Bangladesh and Laos for an analysis of the population structure and underlying genetic diversity using 2,834 SNPs. STRUCTURE analysis (ΔK at K=6) allowed us to group the accessions into six subpopulations that corresponded well with the unrooted phylogenetic tree and principal coordinate analyses. The phylogenetic tree showed the diversity of L. acutangula in Thailand, and accessions from other countries apart from Thailand were grouped together in the same branches. In STRUCTURE, subpopulation 2 contained only accessions from Thailand while other subpopulations contained a combination of accessions from Thailand and from other countries. When plotted, the STRUCTURE bars to the area of collection, it revealed the geneflow from the surrounding places nearby as indicated by the admixed genetic in the STRUCTURE bars. AMOVA based on STRUCTURE clustering showed the variation between populations (12.83%) and confirmed the absence of population structure in subpopulations (−10.59%). There was a distinguishing characteristic fruit shape and length in each subpopulation. The ample genetic diversity found in the L. acutangula germplasm can be utilized in ridge gourd breeding programs to help meet the demands and needs of both consumers and farmers.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2007
Author(s):  
A. S. M. Faridul Islam ◽  
Dean Sanders ◽  
Amit Kumar Mishra ◽  
Vijay Joshi

Olives are one of the most important fruit and woody oil trees cultivated in many parts of the world. Olive oil is a critical component of the Mediterranean diet due to its importance in heart health. Olives are believed to have been brought to the United States from the Mediterranean countries in the 18th century. Despite the increase in demand and production areas, only a few selected olive varieties are grown in most traditional or new growing regions in the US. By understanding the genetic background, new sources of genetic diversity can be incorporated into the olive breeding programs to develop regionally adapted varieties for the US market. This study aimed to explore the genetic diversity and population structure of 90 olive accessions from the USDA repository along with six popular varieties using genotyping-by-sequencing (GBS)-generated SNP markers. After quality filtering, 54,075 SNP markers were retained for the genetic diversity analysis. The average gene diversity (GD) and polymorphic information content (PIC) values of the SNPs were 0.244 and 0.206, respectively, indicating a moderate genetic diversity for the US olive germplasm evaluated in this study. The structure analysis showed that the USDA collection was distributed across seven subpopulations; 63% of the accessions were grouped into an identifiable subpopulation. The phylogenetic and principal coordinate analysis (PCoA) showed that the subpopulations did not align with the geographical origins or climatic zones. An analysis of the molecular variance revealed that the major genetic variation sources were within populations. These findings provide critical information for future olive breeding programs to select genetically distant parents and facilitate future gene identification using genome-wide association studies (GWAS) or a marker-assisted selection (MAS) to develop varieties suited to production in the US.


Sign in / Sign up

Export Citation Format

Share Document