scholarly journals The rise and rise of antimicrobial resistance in Gram-negative bacteria

2019 ◽  
Vol 40 (2) ◽  
pp. 62
Author(s):  
Adam Stewart ◽  
Hugh Wright ◽  
Krispin Hajkowicz

Antimicrobial resistance is a major threat to the delivery of effective care and already causes 700000 excess deaths per year worldwide. International consensus on action to combat antimicrobial resistance was reached in 2015. Australia is implementing a national strategy. The clinical consequences of antimicrobial resistance are seen most acutely in multi-drug resistant Gram-negative bacterial infections, where they cause increased mortality and morbidity and threaten the delivery of once routine medical care. The solution to antimicrobial resistance is complex and multifaceted. Antimicrobial stewardship, that is optimising the use of the antibiotics we currently have, is the most rapidly deployable mitigation. Several novel antibiotics with activity against a range of drug-resistant bacteria are now available clinically, leading to hope that innovative solutions will reduce the impact of resistance. It is critical that these new drugs are protected from inappropriate use.

2020 ◽  
Vol 14 (3) ◽  
pp. 1639-1647
Author(s):  
Wardah Mohammad Akram ◽  
Godfred Antony Menezes ◽  
Nida Abbas ◽  
Wasim Ahmad ◽  
Ahmed Mohamed Ahmed

The multidrug-resistant Gram-negative bacteria (MDR-GNB) infections in severely infected patients present numerous difficulties in terms of treatment failure where antibiotics cannot arrest such drug resistant bacteria. Based on the patient’s medical history and updated microbiological epidemiology data, an effective empirical treatment remains critical for optimal results to safeguard human health. The aim of this manuscript is to review management of MDR-Gram negative pathogenic bacterial infections. Quick diagnosis and narrow antimicrobial spectrum require rapid and timely diagnosis and effective laboratories in accordance with antimicrobial stewardship (AS) principles. Worldwide, there is an increased emergence of Carbapenem-resistant Enterobacteriaceae (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. Recently, novel therapeutic options, such as meropenem/vaborbactam, ceftazidime/avibactam, ceftolozane/tazobactam, eravacycline and plazomicin became accessible to effectively counteract severe infections. Optimally using these delays the emergence of resistance to novel therapeutic agents. Further study is required, however, due to uncertainties in pharmacokinetic/pharmacodynamics optimization of dosages and therapeutic duration in severely ill patients. The novel agents should be verified for (i) action on carbapenem resistant Acinetobacter baumannii; (ii) action on CRE of β-lactam/β-lactamase inhibitors dependence on type of carbapenemase; (iii) emergence of resistance to novel antibacterials and dismiss selective pressure promoting development of resistance. Alternative treatments should be approached alike phage therapy or antibacterial peptides. The choice of empirical therapy is complicated by antibiotic resistance and can be combated by accurate antibiotic and their combinations usage, which is critical to patient survival. Noteworthy are local epidemiology, effective teamwork and antibiotic stewardship to guarantee that medications are utilized properly to counter the resistance.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 196 ◽  
Author(s):  
Sabrina Morris ◽  
Elizabeth Cerceo

The increasing prevalence of antibiotic resistance is a threat to human health, particularly within vulnerable populations in the hospital and acute care settings. This leads to increasing healthcare costs, morbidity, and mortality. Bacteria rapidly evolve novel mechanisms of resistance and methods of antimicrobial evasion. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii have all been identified as pathogens with particularly high rates of resistance to antibiotics, resulting in a reducing pool of available treatments for these organisms. Effectively combating this issue requires both preventative and reactive measures. Reducing the spread of resistant pathogens, as well as reducing the rate of evolution of resistance is complex. Such a task requires a more judicious use of antibiotics through a better understanding of infection epidemiology, resistance patterns, and guidelines for treatment. These goals can best be achieved through the implementation of antimicrobial stewardship programs and the development and introduction of new drugs capable of eradicating multi-drug resistant Gram-negative pathogens (MDR GNB). The purpose of this article is to review current trends in MDR Gram-negative bacterial infections in the hospitalized setting, as well as current guidelines for management. Finally, new and emerging antimicrobials, as well as future considerations for combating antibiotic resistance on a global scale are discussed.


2021 ◽  
Vol 16 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Yue Sun ◽  
Lingxian Meng ◽  
Yuxin Zhang ◽  
Dan Zhao ◽  
Yunfeng Lin

Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.


2021 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Hamid Bokhary ◽  
Krisna N. A. Pangesti ◽  
Harunor Rashid ◽  
Moataz Abd El Ghany ◽  
Grant A. Hill-Cawthorne

There is increasing evidence that human movement facilitates the global spread of resistant bacteria and antimicrobial resistance (AMR) genes. We systematically reviewed the literature on the impact of travel on the dissemination of AMR. We searched the databases Medline, EMBASE and SCOPUS from database inception until the end of June 2019. Of the 3052 titles identified, 2253 articles passed the initial screening, of which 238 met the inclusion criteria. The studies covered 30,060 drug-resistant isolates from 26 identified bacterial species. Most were enteric, accounting for 65% of the identified species and 92% of all documented isolates. High-income countries were more likely to be recipient nations for AMR originating from middle- and low-income countries. The most common origin of travellers with resistant bacteria was Asia, covering 36% of the total isolates. Beta-lactams and quinolones were the most documented drug-resistant organisms, accounting for 35% and 31% of the overall drug resistance, respectively. Medical tourism was twice as likely to be associated with multidrug-resistant organisms than general travel. International travel is a vehicle for the transmission of antimicrobial resistance globally. Health systems should identify recent travellers to ensure that adequate precautions are taken.


mSystems ◽  
2021 ◽  
Author(s):  
Indorica Sutradhar ◽  
Carly Ching ◽  
Darash Desai ◽  
Mark Suprenant ◽  
Emma Briars ◽  
...  

The rate at which antimicrobial resistance (AMR) has developed and spread throughout the world has increased in recent years, and according to the Review on Antimicrobial Resistance in 2014, it is suggested that the current rate will lead to AMR-related deaths of several million people by 2050 (Review on Antimicrobial Resistance, Tackling a Crisis for the Health and Wealth of Nations , 2014). One major reservoir of resistant bacterial populations that has been linked to outbreaks of drug-resistant bacterial infections but is not well understood is in wastewater settings, where antibiotic pollution is often present.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 519
Author(s):  
Roberto Giurazza ◽  
Maria Civita Mazza ◽  
Roberto Andini ◽  
Pasquale Sansone ◽  
Maria Caterina Pace ◽  
...  

Antimicrobial resistance (AMR) remains one of the top public health issues of global concern. Among the most important strategies for AMR control there is the correct and appropriate use of antibiotics, including those available for the treatment of AMR pathogens. In this article, after briefly reviewing the most important and clinically relevant multi-drug-resistant bacteria and their main resistance mechanisms, we describe the emerging antimicrobial options for both MDR Gram-positive cocci and Gram-negative bacilli, including recently marketed agents, molecules just approved or under evaluation and rediscovered older antibiotics that have regained importance due to their antimicrobial spectrum. Specifically, emerging options for Gram-positive cocci we reviewed include ceftaroline, ceftobiprole, tedizolid, dalbavancin, and fosfomycin. Emerging treatment options for Gram-negative bacilli we considered comprise ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, aztreonam-avibactam, minocycline, fosfomycin, eravacycline, plazomicin, and cefiderocol. An exciting scenario is opening today with the long awaited growing availability of novel molecules for the treatment of AMR bacteria. Knowledge of mechanisms of action and resistance patterns allows physicians to increasingly drive antimicrobial treatment towards a precision medicine approach. Strict adherence to antimicrobial stewardship practices will allow us to preserve the emerging antimicrobials for our future.


JMS SKIMS ◽  
2014 ◽  
Vol 17 (2) ◽  
pp. 48-49
Author(s):  
Bashir A Fomda

The discovery of penicillin in 1928 by Alexander Fleming , a magic antibiotic used for treatment of most of the bacterial infection marked the beginning of antibiotic era. With booming drug development a new drug was always available to treat increasing drug resistant bacteria. Between 1935 to 2003 fourteen classes of antibiotics were developed. However with the indiscriminate and inappropriate use of antibiotics, microbes developed mechanisms to elude the action of antimicrobial agents. JMS 2014;17(2):48-49


Author(s):  
Daniel Berman

How can we prevent the rise of resistance to antibiotics? In this video, Daniel Berman,  Nesta Challenges, discusses the global threat of AMR and how prizes like the Longitude Prize can foster the development of rapid diagnostic tests for bacterial infections, helping to contribute towards reducing the global threat of drug resistant bacteria. Daniel outlines how accelerating the development of rapid point-of-care tests will ensure that bacterial infections are treated with the most appropriate antibiotic, at the right time and in the right healthcare setting.


Sign in / Sign up

Export Citation Format

Share Document