135 Effect of different concentrations of follicular fluid exosome-like extracellular vesicles on in vitro oocyte maturation and embryo development in cattle

2022 ◽  
Vol 34 (2) ◽  
pp. 305
Author(s):  
G. N. Singina ◽  
E. N. Shedova ◽  
R. E. Uzbekov ◽  
S. Uzbekova
2020 ◽  
Vol 21 (15) ◽  
pp. 5365 ◽  
Author(s):  
Mohammad Mehedi Hasan ◽  
Janeli Viil ◽  
Freddy Lättekivi ◽  
James Ord ◽  
Qurat Ul Ain Reshi ◽  
...  

While follicular fluid (FF) is well known to provide an optimal environment for oogenesis, its functional roles following its release into the oviduct during ovulation are currently elusive. We hypothesized that FF and FF-derived extracellular vesicles (EVs) may be conveyors of signals capable of inducing functionally-relevant transcriptional responses in oviductal cells. The aim of this study was, therefore, to evaluate the effect of FF and FF-derived EVs on the transcriptome of primary bovine oviductal epithelial cells (BOECs). We examined the gene expression of BOECs in three conditions: BOECs cultured with FF, FF-derived EVs, and without supplementations. For each condition, cells were cultured for 6 and 24 h. RNA sequencing results revealed that FF had a stronger effect on BOECs gene expression compared to EVs. We detected 488 and 1998 differentially expressed genes (DEGs) with FF treatment in 6 and 24 h, respectively, whereas only 41 DEGs were detected at 6 h following EV treatment. Pathway analysis of the FF-induced DEGs showed that several pathways were highly enriched, notably oxidative phosphorylation, thermogenesis, arachidonic acid metabolism, and steroid hormone biosynthesis. Some of these pathways have a role in sperm survival, fertilization, and early embryo development. In conclusion, the findings of our study demonstrate for the first time that bovine FF and FF-derived EVs can induce changes in the gene expression of the bovine oviductal cells which, although observed in vitro, may be reflective of in vivo responses which may contribute to a favorable periconceptional microenvironment for sperm survival, fertilization, and early embryo development.


Author(s):  
A.A. Mohammed ◽  
T. Al-Shaheen ◽  
S. Al-Suwaiegh

Oocytes are bathed in extracellular fluid of the antral follicles, which is termed follicular fluid (FF). Follicular fluid is synthesized from secretions of theca, granulosa, and cumulus cells and from a transudate of blood plasma. Oocytes persist in meiotic arrest in antral follicles until luteinizing hormone (LH) surge or removal the oocytes from the ovarian follicles. This suggests that FF before LH surge might contain meiosis inhibiting factor(s). The microvasculatory bed of the follicular wall and the composition of FF undergo changes during follicular growth and development, which is important for oocyte maturation and subsequent embryo development. Therefore, it is expected that FF composition and components might change according to timing of FF aspiration from follicles. Hence, negative or positive effects could be expected when FF supplemented during oocyte maturation in vitro. Nutrition effects on microvasculatory bed of follicles and their sizes. Thus, the nutritional status of animals is a factor affected on oocyte maturation and embryo development. The present article reviews and discusses these effects.


2012 ◽  
Vol 24 (1) ◽  
pp. 208
Author(s):  
J. Mao ◽  
K. M. Whitworth ◽  
L. D. Spate ◽  
E. M. Walters ◽  
J. Zhao ◽  
...  

Mitochondria supply the majority of ATP in a cell. Mitochondrial DNA (mtDNA) copy number in oocytes might be used as a marker of viability and might be a key determinant of pre-implantation embryo development. However, little is known about mtDNA copy number changes during porcine oocyte maturation and its regulation by extracellular growth factors. The objectives of the current study were to determine the effects of supplementation of in vitro maturation medium with porcine follicular fluid (pFF; 0, 10, 20 and 30%), epidermal growth factor (EGF; 10 ng mL–1), neuregulin 1 (NRG; 20 ng mL–1) and NRG + IGF1 (insulin-like growth factor-1; 100 ng mL–1 + NRG, 20 ng mL–1) during in vitro maturation on mtDNA copy number, oocyte meiotic maturation and subsequent embryo development after parthenogenic activation. Follicular fluid used for the pFF supplementation experiment was prepared from medium-sized (3–6 mm in diameter) healthy follicles. Cumulus–oocyte complexes (COCs) were collected from antral follicles (3–6 mm in diameter), cultured in LH- and FSH-containing maturation medium for 22 h at 38.5°C, transferred into basic maturation medium without FSH and LH and cultured for another 22 h. The basic maturation medium was TCM-199 supplemented with 0.1% polyvinylalcohol (w/v), 3.05 mM D-glucose, 0.91 mM sodium pyruvate, 10 μg mL–1 of gentamicin, 0.57 mM cysteine and without or with different growth factors depending on the experimental design. In total, 177 germinal vesicle (GV) oocytes and 3837 MII oocytes were used for this study. All data were analyzed by the general linear model (GLM) procedure of SAS software (V9.2). The mtDNA copy number in oocytes increased (P < 0.05) from GV to MII stage oocytes (MII oocytes from all treatment groups pooled). Supplementation of IVM media with 10% pFF decreased mtDNA copy number (P < 0.05), whereas 20 and 30% pFF had no major effect on mtDNA copy number, resulting in a quadratic correlation between percentage of pFF and mtDNA copy number. There was a negative linear correlation between percentage of pFF and oocyte meiotic maturation, with a higher percentage of pFF inhibiting meiotic maturation (73.2 ± 5.2, 71.9 ± 4.8, 64.1 ± 8.5 and 65.8 ± 6.4% for 0, 10, 20 and 30% pFF groups, respectively). The mtDNA copy numbers in EGF and NRG-treated MII oocytes were significantly higher than those in GV oocytes, whereas the control was not different (EGF, 237 042.6 ± 22 198.2; NRG, 281 293.4 ± 22 893.5; and control, 231 856.8 ± 21 883.5 in MII oocytes vs 192 288.7 ± 21 675.4 in GV oocytes). The EGF, NRG and NRG+IGF1 treatments enhanced oocyte maturation as well. There was no difference in Day-7 blastocyst formation between EGF, NRG+IGF1 and the control, whereas the NRG treatment enhanced blastocyst formation as compared to the control (23.8 ± 2.4 vs 15.1 ± 2.1%; P < 0.05). This study demonstrated that there was an increase in mtDNA copy number during in vitro maturation. The EGF and NRG treatments stimulated mitochondria biogenesis, which may provide new means to increase oocyte quality and enhance embryonic development.


2018 ◽  
Vol 34 (8) ◽  
pp. 698-703 ◽  
Author(s):  
Elham Eyvaznejad ◽  
Mohammad Nouri ◽  
Aliyeh Ghasemzadeh ◽  
Amir Mehdizadeh ◽  
Vahideh Shahnazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document