46 Gene expression changes in trophoblast cells after the blastocyst stage in cattle

2022 ◽  
Vol 34 (2) ◽  
pp. 258
Author(s):  
H. Akizawa ◽  
H. Bai ◽  
M. Takahashi ◽  
M. Kawahara
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Eszter Posfai ◽  
Sophie Petropoulos ◽  
Flavia Regina Oliveira de Barros ◽  
John Paul Schell ◽  
Igor Jurisica ◽  
...  

The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling.


2020 ◽  
Vol 21 (18) ◽  
pp. 6488
Author(s):  
Arkadiusz Kajdasz ◽  
Ewelina Warzych ◽  
Natalia Derebecka ◽  
Zofia E. Madeja ◽  
Dorota Lechniak ◽  
...  

Compared to other mammalian species, porcine oocytes and embryos are characterized by large amounts of lipids stored mainly in the form of droplets in the cytoplasm. The amount and the morphology of lipid droplets (LD) change throughout the preimplantation development, however, relatively little is known about expression of genes involved in lipid metabolism of early embryos. We compared porcine and bovine blastocyst stage embryos as well as dissected inner cell mass (ICM) and trophoblast (TE) cell populations with regard to lipid droplet storage and expression of genes functionally annotated to selected lipid gene ontology terms using RNA-seq. Comparing the number and the volume occupied by LD between bovine and porcine blastocysts, we have found significant differences both at the level of single embryo and a single blastomere. Aside from different lipid content, we found that embryos regulate the lipid metabolism differentially at the gene expression level. Out of 125 genes, we found 73 to be differentially expressed between entire porcine and bovine blastocyst, and 36 and 51 to be divergent between ICM and TE cell lines. We noticed significant involvement of cholesterol and ganglioside metabolism in preimplantation embryos, as well as a possible shift towards glucose, rather than pyruvate dependence in bovine embryos. A number of genes like DGAT1, CD36 or NR1H3 may serve as lipid associated markers indicating distinct regulatory mechanisms, while upregulated PLIN2, APOA1, SOAT1 indicate significant function during blastocyst formation and cell differentiation in both models.


Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2490-2495 ◽  
Author(s):  
Wenjiao Li ◽  
Lu Gao ◽  
Yan Wang ◽  
Tao Duan ◽  
Leslie Myatt ◽  
...  

Chorion is the most abundant site of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression within intrauterine tissues. It is important to study the regulation of 11β-HSD1 expression in the chorion in terms of local cortisol production during pregnancy. Using real-time PCR and enzyme activity assay, we found that cortisol (1 μm) and IL-1β (10 ng/ml) for 24 h significantly increased 11β-HSD1 mRNA expression and reductase activity in cultured human chorionic trophoblasts. A further significant increase of 11β-HSD1 mRNA expression and reductase activity was observed with cotreatment of cortisol and IL-1β. To explore the mechanism of induction, 11β-HSD1 promoter was cloned into pGL3 plasmid expressing a luciferase reporter gene. By transfecting the constructed vector into WISH cells, an amnion-derived cell line, we found that cortisol (1 μm) or IL-1β (10 ng/ml) significantly increased reporter gene expression. Likewise, an additional increase in reporter gene expression was observed with cotreatment of cortisol and IL-β. To explore the physiological significance of 11β-HSD1 induction in the chorion, we studied the effect of cortisol on cytosolic phospholipase A2 and cyclooxygenase 2 expression. We found that treatment of chorionic trophoblast cells with cortisol (1 μm) induced both cytosolic phospholipase A2 and cyclooxygenase 2 mRNA expression. We conclude that cortisol up-regulates 11β-HSD1 expression through induction of promoter activity, and the effect was enhanced by IL-1β, suggesting that more biologically active glucocorticoids could be generated in the fetal membranes in the presence of infection, which may consequently feed forward in up-regulation of prostaglandin synthesis.


2006 ◽  
Vol 18 (2) ◽  
pp. 233
Author(s):  
N.-H. Kim ◽  
S.-K. Cho ◽  
X.-Y. Li ◽  
X.-H. Shen ◽  
X.-S. Cui

Following parthenogenetic activation, in the absence of a male contribution, oocytes progress into early gestation. To gain insight into the role of the paternal genome during pre-implantation development, we used microarray to compare gene expression profiles in pre-implantation embryos following fertilization and parthenogenetic activation. Fertilized embryos and oocytes were collected from superovulated C57BL/6J female mice. The oocytes were activated with 50 �M calcium ionophore A23187 for 5 min. After 5 h of culture in M16 medium with 7.5 �g/mL cytochalasin B, oocytes with one polar body and two pronuclei were used in this experiment. The activated oocytes and zygotes were cultured in M16 to the blatocyst stage. Messenger RNA from 50 blastocysts was extracted by means of the Dynabeads mRNA Direct Kit (Dynal, Oslo, Norway), and then linearly amplified for two rounds using the RiboAmp HS RNA Amplification Kit (Arcturus Bioscience, Inc., Mountain View, CA, USA). A set of cRNA targets from the embryos was assembled into a hybridization reaction on the Applied Biosystems 1700 chemiluminescent microarray analyzer (Jung Hwa Scientific Co., Ltd., Seoul, Korea). Each set was repeated three times. All of the correlation coefficients were above 0.9 for experiment replications. Differences in microarray intensities were normalized and grouped by using the Avadis Prophetic 3.3 version, and categories are based on the PANTHER classification system. According to the cDNA microarray data, we additionally categorized genes into transcription- and developmental process-related genes and compared them in both fertilized and parthenogenetically activated blastocysts. Five transcription-related genes (Goosecoid, transcription factor 1, LIM domain, Spi-C transcription factor, and hypoxia inducible factor 3) and seven developmental process related genes (metaxin 1, serine/threonine kinase 22, stromal antigen, butyrophilin, anti-Mullerian hormone type 2 receptor, prolactin-like protein C2, and otoconin 90) were identified in the fertilized blastocysts compared to the blastocyst-stage parthenotes. In contrast, seven transcription- (Amnionless, EHOX-like, calcium signal transducer 2, nuclear receptor 0B, transcription factor CP2, Iroquois related homeobox 3, and zinc finger protein 3) and eight developmental process-related genes (prion protein dublet, X-linked lymphocyte-regulated 3a, muscleblind-like 3, stathmin-like 2, SRY-box-containing gene 7, ephrin B1, muscleblind-like 3, and Iroquois-related homeobox 3) were expressed at a higher level in parthenotes than in fertilized blastocysts. These genes were selected, and their expression levels confirmed, by real-time quantitative RT-PCR. The results indicate that diploid parthenotes at the blastocyst stage may lack or over express genes related to transcription and development processes which possibly result in fetal lethality. Further studies are required to determine whether aberrant gene expression in parthenotes is due to lack of paternal contribution. This work was funded by a grant from the National Research Laboratory Program in Korea.


2016 ◽  
Vol 28 (2) ◽  
pp. 199
Author(s):  
D. Kradolfer ◽  
J. Knubben ◽  
V. Flöter ◽  
J. Bick ◽  
S. Bauersachs ◽  
...  

X-Chromosome inactivation in female mammals starts during early blastocyst stage with expression of the X-inactive specific transcript (XIST), which coats and silences the inactive X chromosome. However, this compensation is not complete in blastocysts, as a large number of X-linked transcripts are more highly expressed in female embryos than in males. Furthermore, the process of X chromosome inactivation is altered in IVF and cloned porcine embryos, possibly explaining problems of embryo survival with these techniques. The aim of this study was to gain more insights into the transcriptional dynamics of the porcine pre-implantation embryo, with a particular focus on sex-specific differences. RNA sequencing (RNA-Seq) was performed for individual blastocysts at 8, 10, and 12 days after ovulation, and the temporal development of sex-specific transcripts was analysed. German Landrace sows were cycle synchronized and inseminated with sperm of the same Pietrain boar. On Days 8, 10, and 12 post-insemination, sows were slaughtered and embryos were removed from the uterus using 10 mL of PBS (pH 7.4) per horn. Single embryos were shock frozen in liquid nitrogen and stored at –80°C until the extraction of RNA and DNA (AllPrep DNA/RNA Micro Kit, Qiagen, Valencia, CA, USA). Using the isolated DNA, the sex of the embryos was determined and 5 female and male embryos, respectively, were analysed per stage. Illumina TruSeq Stranded mRNA libraries (Illumina Inc., San Diego, CA, USA) were sequenced on a HiSEqn 2500 (Illumina Inc.), and 15 to 25 million 100-bp single-end reads were generated per sample. Reads were filtered and processed using Trimmomatic and mapped to the porcine genome assembly Sscrofa10.2 with TopHat2. Mapped reads were counted by the use of QuasR qCount based on the current National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) GFF3 annotation file. Statistical analysis of count data was performed with the BioConductor R (https://www.bioconductor.org/) package DESEqn 2. At all 3 stages, we found 7 Y-linked transcripts that were highly expressed in male embryos (EIF2S3, EIF1AY, LOC100624590, LOC100625207, LOC100624329, LOC102162178, LOC100624937). On the other hand, 47 X-linked transcripts showed increased expression in female blastocysts, most of them at all 3 time points. However, a small number of genes (DDX3X, LAMP2, and RPS6KA3) were more highly expressed in females at Days 8 and 10 but more highly expressed in males at Day 12. Three X-linked genes (OFD1, KAL1, and LOC100525092) were more highly expressed in male embryos, although only at a low fold change of 1.2 to 1.4. Furthermore, expression of 8 transcripts located on autosomes was higher in females. In conclusion, our study expands the current knowledge of sex-specific gene expression in 8- to 12-day-old porcine blastocysts, a critical time period during pre-implantation embryo development.


2015 ◽  
Vol 27 (1) ◽  
pp. 119
Author(s):  
A. Ruiz ◽  
P. J. Hansen ◽  
J. Block

The objective was to determine the effects of addition of l-carnitine (LC) and trans-10, cis-12 conjugated linoleic acid (CLA) during bovine embryo culture on cryosurvival, lipid content, and gene expression. For all experiments, embryos were produced in vitro using abattoir-derived oocytes. Following insemination, presumptive zygotes were randomly assigned in a 2 × 2 factorial to be cultured in SOF-BE1 supplemented with or without 3.03 mM LC and 100 μM CLA until Day 7. For Exp. 1, blastocyst- and expanded-blastocyst-stage embryos (n = 777) were slow-frozen in 1.5 M ethylene glycol. Embryos were thawed and then cultured for 72 h. Re-expansion and hatching rates were recorded at 24, 48, and 72 h. There was no effect of LC on post-thaw re-expansion rates, but CLA reduced (P < 0.05) and tended (P < 0.08) to reduce re-expansion rate at 24 and 48 h, respectively (76.5 ± 2.5 v. 70.4 ± 2.5 and 79.5 ± 2.2 v. 76.0 ± 2.2, respectively). Whereas hatching rate at 72 h tended (P < 0.08) to be higher for embryos cultured with LC (67.8 ± 2.5 v. 74.4 ± 2.5), treatment with CLA reduced (P < 0.05) hatching rate at 48 h (62.3 ± 2.6 v. 54.9 ± 2.6). In Exp. 2, to determine lipid content, expanded blastocyst-stage embryos (n = 263) were harvested and stained using Nile Red. Embryos were examined for fluorescence using an epifluorescence microscope, and intensity of fluorescence per unit area was quantified using ImageJ software (NIH, Bethesda, MD, USA). There was a significant interaction (P < 0.01) between LC and CLA affecting embryo lipid content. Whereas addition of CLA during culture increased lipid, treatment with LC and the combination of LC and CLA reduced lipid (22.8 ± 1.1 v. 19.1 ± 1.1 v. 28.4 ± 1.1 v. 19.2 ± 1.2 for no additive, +LC, +CLA, and +LC and CLA, respectively). For Exp. 3, the effect of LC and CLA on the relative abundance of genes involved in lipid metabolism (ELOVL6, SCD1, SQLE, HMGCS1, CYP51A1, FDPS, FDFT1, LDLR, and SC4MOL) was determined. Pools of 5 expanded blastocyst-stage embryos from each treatment were collected across 5 replicates. The RNA was purified and synthesised into cDNA for RT-qPCR analysis. The SDHA, GAPDH, and YWAZ were used as housekeeping genes. Addition of LC during culture reduced (P < 0.05) the abundance of 4 of the 9 genes analysed (SQLE, HMGCS1, CYP51A1, and FDPS) and tended (P < 0.08) to reduce a fifth (FDFT1). In addition, there was a tendency (P < 0.08) for LC to increase the abundance of SCD1. Addition of CLA during culture had minimal effects on transcript abundance. In particular, CLA treatment reduced (P < 0.01) ELOVL6 and tended (P < 0.08) to increase SCD1. In contrast to previous studies, post-thaw cryosurvival was not significantly improved by treatment with LC or CLA. Results indicate that reduced embryo lipid content caused by LC treatment is due, in part, to an alteration in the abundance of genes involved in lipid metabolism. Further research is still necessary to determine whether in vivo survival following transfer of cryopreserved embryos can be enhanced by treatment with LC or CLA.Support was provided by USDA AFRI Grant 2010–85122–20623.


2010 ◽  
Vol 22 (1) ◽  
pp. 299
Author(s):  
S. Matoba ◽  
S. Mamo ◽  
E. Gallagher ◽  
A. G. Fahey ◽  
T. Fair ◽  
...  

The ability to culture oocytes and embryos in an individually identifiable manner facilitates the study of the relationship between follicle param- eters and oocyte development, in order to identify markers of competent oocytes. The aim of this study was to examine the predictive value of intrafollicular steroid concentrations and granulosa cell transcript abundance on the ability of immature bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles (n = 214, 11 replicates, 49 animals) were dissected from the ovaries of slaughtered animals. Following measure- ment of diameter, follicles were carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through maturation, fertilization, and culture on the cell adhesive Cell-Tak (20 oocytes/100 μL; Matoba and Lonergan 2009 Reprod. Fertil. Dev. 21, 160). Cleavage and blastocyst rates were assessed on Days 2 and 9, respectively. Follicular fluid was recovered and stored at -80°C until analysis for concentrations of the steroids estradiol, progesterone, and testosterone by RIA. Granulosa cells were collected from each follicle for analysis of gene expression by quantitative RT-PCR. Primers were designed for 7 target genes (AMH, CYP19A, ESR1, ESR2, FSHR, HSD3B1 and LHCGR) and 2 reference genes (PPIA and H2AZ). Transcript abundance of target genes in granulosa cells associated with embryos that cleaved and developed to the blastocyst stage (competent) and those that cleaved but failed to develop (incompetent) was examined. Mean steroid concentrations were compared by ANOVA and Spearman correlations, and logistical regression were used to test the relationship between follicle size and steroid con- centration and the ability of steroid concentration to predict developmental competence. Gene expression data were analyzed using the delta-delta CT (cycle threshold) method. Values were normalized to the average values of the reference genes and means were compared by the Student’s t-test In total, 79.1% of oocytes cleaved after IVF and 28.3% developed to the blastocyst stage. The mean (±SEM) follicular concentrations of testosterone (62.8 ± 4.8 ng mL-1), progesterone (616.8 ± 31.9 ng mL-1), or estradiol (14.4 ± 2.4 ng mL-1 were not different (P ≥ 0.05) between competent and incompetent oocytes. Follicular diameter was negatively correlated with testosterone, progesterone, testosterone:estradiol, and pro- gesterone:estradiol (P ≤ 0.01) and positively correlated with estradiol (P ≤ 0.01). Logistical regression analysis showed that steroid concentrations or the ratio of steroids were not satisfactory predictors of oocyte competence. Transcript abundance of AMH, ESR1, ESR2, FSHR, and HSD3B1 was significantly higher (P ≤ 0.05) in granulosa cells associated with competent compared with incompetent oocytes. In conclusion, follicular steroid concentrations were not associated with oocyte development. In contrast, granulosa cell gene expression may be a useful predictor of oocyte competence. Supported by Science Foundation Ireland (07/SRC/B1156).


2008 ◽  
Vol 20 (1) ◽  
pp. 168
Author(s):  
L. Magnani ◽  
R. Cabot

Parthenogenetic embryos obtained by electroactivation of mature oocytes have been used as models in developmental studies. The correct gene expression in early cleavage embryos is essential to sustain embryo development. The precise regulation of genes involved in pluripotency (Oct-4, Sox-2, and Nanog) is crucial to the formation of inner cell mass and trophoblast cells. Failure to do so can contribute to impaired development. We hypothesized that porcine embryos produced by fertilization in vitro and parthenogensis would possess a similar pattern of expression of Oct-4, Nanog, and Sox-2 during cleavage development. The objective of this study was to determine the developmental expression pattern of these three transcription factors in porcine oocytes and cleavage-stage embryos produced by either fertilization or parthenogenesis. Messenger RNAwas isolated from pools of 40-150 germinal vesicle (GV)- and MII-arrested oocytes and pools of 2-cell (2c), 4-cell (4c), 8-cell (8c), and blastocyst-stage embryos produced by in vitro fertilization (IVF) or electroactivation. Quantitative real-time PCR was performed following cDNA synthesis. Transcripts for Oct-4, Nanog, Sox-2, andYWHAG (housekeeping gene control) were amplified in duplicate across three to five experimental replicates. Transcripts were quantified using the comparative CT method using YWHAG as internal control and GV stage as normalizing stage. Fold activation and repression were analyzed with ANOVA and Tukey's post-hoc test. Our results show that porcine embryos produced by either IVF or electroactivation possess a similar pattern of pluripotent gene expression during cleavage-stage development. Oct-4 was found to be present in high abundance in the 2-cell parthenogenetic embryos and then repressed at the 8-cell stage (10-fold; P < 0.05, 2c v. 8c). In IVF embryos, Oct-4 was found in significantly higher amount at the 2-cell stage (35-fold; P < 0.05, 2c v. GV). Nanog transcripts were present at low levels from the GV oocyte until the 4-cell stage in both IVF and parthenogenetic embryos and then upregulated 10 000-fold at the 4-cell stage (P < 0.0001, GV v. 4c); at the blastocyst stage, Nanog transcript levels were similar to the levels found in the GV stage oocytes. Sox-2 transcripts were lower in MII oocytes and were significantly upregulated in 8-cell-stage embryos produced by either IVF or electroactivation (9- and 20-fold; P < 0.01, P < 0.0001, MII v. 8c, respectively). In addition, Sox-2 transcripts were significantly higher in parthenogenetic blastocysts compared to IVF-derived blastocysts (P < 0.05). This work demonstrates that cleavage-stage porcine embryos, produced by either electroactivation or IVF, undergo a similar pattern of activation of key regulatory genes; however, the activation method can have an influence on the transcript abundance of specific genes at defined stages.


2019 ◽  
Vol 31 (1) ◽  
pp. 134
Author(s):  
D. Veraguas ◽  
C. Aguilera ◽  
D. Echeverry ◽  
D. Saez-Ruiz ◽  
F. O. Castro ◽  
...  

The kodkod is considered a vulnerable species by the International Union for Conservation of Nature. Phylogenetically, the kodkod is classified in the Leopardus genus, which has only 36 chromosome pairs compared with the domestic cat, which has 38. The proposed hypothesis was that domestic cat oocytes are capable of reprogramming somatic cells from kodkod after interspecies somatic cell NT (SCNT), allowing the in vitro embryo development up to blastocyst stage. Five experimental groups were made based on the technology and culture system: (1) cat embryos generated by IVF (IVF), (2) cat embryos generated by SCNT (Ca1x), (3) aggregated cat embryos generated by SCNT (Ca2x), (4) kodkod embryos generated by interspecies SCNT (K1x), and (5) aggregated kodkod embryos generated by interspecies SCNT (K2x). Interspecies SCNT was performed using a zona-free method. Reconstructed embryos were activated by 2 electrical pulses of 140 kV cm−1 for 40 µs and then incubated for 5h in 10μg mL−1 of cycloheximide and 5μg mL−1 of cytochalasin B. Embryos were cultured in SOF media using the well of the well system in a 5% O2, 5% CO2, and 90% N2 atmosphere at 38.5°C for 8 days. The morulae and blastocysts rates were estimated, and diameter of cloned blastocysts was measured. The relative expression of OCT4, SOX2, and NANOG was evaluated in blastocysts by RT-qPCR using the standard curve method; SDHA was used for normalization. The Kruskal-Wallis test was used to evaluate the developmental parameters and gene expression. The t-test was used to evaluate blastocyst diameter. Statistical differences were considered at P&lt;0.05. The number of replicates was IVF=10, Ca1x=8, Ca2x=6, K1x=3, and K2x=8. The morulae rate was lower when clone embryos were cultured individually (IVF=97/153, 63.4%; Ca2x=28/51, 54.9%; K2x=63/110, 57.3%; Ca1x=48/126, 38.1%; K1x=22/87, 25.3%; P&lt;0.05). In the domestic cat, blastocysts rate was higher in IVF (58/153, 37.9%) and Ca2x (28/51, 29.4%) groups than in the Ca1x group (21/126, 16.7%; P&lt;0.05). No blastocysts were generated in the K1x group (0/87), whereas 5.5% of blastocysts were obtained from the K2x (6/110; 5.5%); this was not statistically different compared with the K1x group (P&gt;0.05). No differences were found in blastocyst diameter between the Ca1x (220.4µm) and Ca2x (251.2µm) groups (P&gt;0.05). However, the diameter of the blastocysts from the K2x group (172.8µm) tended to be lower than that of the blastocysts from the Ca2x group (P=0.05). Regarding gene expression, only 1 of the 6 kodkod blastocysts expressed OCT4, and none expressed SOX2 and NANOG. On the other hand, the relative expression of OCT4 tended to decrease in blastocysts from the Ca1x and Ca2x groups compared with the IVF group (P=0.09), but no differences were found in the expression of SOX2 and NANOG among groups (P&gt;0.05). In conclusion, after interspecies SCNT, domestic cat oocytes support the development of kodkod embryos until the morula stage. However, the embryo aggregation did not significantly improve the blastocyst rate and gene expression.


Life Sciences ◽  
2008 ◽  
Vol 82 (25-26) ◽  
pp. 1272-1280 ◽  
Author(s):  
Louiza Belkacemi ◽  
Marie H. Beall ◽  
Thomas R. Magee ◽  
Margaret Pourtemour ◽  
Michael G. Ross

Sign in / Sign up

Export Citation Format

Share Document