scholarly journals Lsd1 prevents age-programed loss of beige adipocytes

2017 ◽  
Vol 114 (20) ◽  
pp. 5265-5270 ◽  
Author(s):  
Delphine Duteil ◽  
Milica Tosic ◽  
Dominica Willmann ◽  
Anastasia Georgiadi ◽  
Toufike Kanouni ◽  
...  

Aging is accompanied by major changes in adipose tissue distribution and function. In particular, with time, thermogenic-competent beige adipocytes progressively gain a white adipocyte morphology. However, the mechanisms controlling the age-related transition of beige adipocytes to white adipocytes remain unclear. Lysine-specific demethylase 1 (Lsd1) is an epigenetic eraser enzyme positively regulating differentiation and function of adipocytes. Here we show that Lsd1 levels decrease in aging inguinal white adipose tissue concomitantly with beige fat cell decline. Accordingly, adipocyte-specific increase of Lsd1 expression is sufficient to rescue the age-related transition of beige adipocytes to white adipocytes in vivo, whereas loss of Lsd1 precipitates it. Lsd1 maintains beige adipocytes by controlling the expression of peroxisome proliferator-activated receptor α (Ppara), and treatment with a Ppara agonist is sufficient to rescue the loss of beige adipocytes caused by Lsd1 ablation. In summary, our data provide insights into the mechanism controlling the age-related beige-to-white adipocyte transition and identify Lsd1 as a regulator of beige fat cell maintenance.

2020 ◽  
Vol 245 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Zhe-Zhen Liao ◽  
Xiao-Yan Qi ◽  
Ya-Di Wang ◽  
Jiao-Yang Li ◽  
Qian-Qian Gu ◽  
...  

Remodeling of energy-storing white fat into energy-consuming beige fat has led to a promising new approach to alleviate adiposity. Several studies have shown adipokines can induce white adipose tissue (WAT) beiging through autocrine or paracrine actions. Betatrophin, a novel adipokine, has been linked to energy expenditure and lipolysis but not clearly clarified. Here, we using high-fat diet-induced obesity to determine how betatrophin modulate beiging and adiposity. We found that betatrophin-knockdown mice displayed less white fat mass and decreased plasma TG and NEFA levels. Consistently, inhibition of betatrophin leads to the phenotype change of adipocytes characterized by increased mitochondria contents, beige adipocytes and mitochondria biogenesis-specific markers both in vivo and in vitro. Of note, blocking AMP-activated protein kinase (AMPK) signaling pathway is able to abolish enhanced beige-like characteristics in betatrophin-knockdown adipocytes. Collectively, downregulation of betatrophin induces beiging in white adipocytes through activation of AMPK signaling pathway. These processes suggest betatrophin as a latent therapeutic target for obesity.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2433
Author(s):  
Cécilia Colson ◽  
Pierre-Louis Batrow ◽  
Nadine Gautier ◽  
Nathalie Rochet ◽  
Gérard Ailhaud ◽  
...  

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect β-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lisa Suwandhi ◽  
Irem Altun ◽  
Ruth Karlina ◽  
Viktorian Miok ◽  
Tobias Wiedemann ◽  
...  

AbstractAdipose tissue expansion, as seen in obesity, is often metabolically detrimental causing insulin resistance and the metabolic syndrome. However, white adipose tissue expansion at early ages is essential to establish a functional metabolism. To understand the differences between adolescent and adult adipose tissue expansion, we studied the cellular composition of the stromal vascular fraction of subcutaneous adipose tissue of two and eight weeks old mice using single cell RNA sequencing. We identified a subset of adolescent preadipocytes expressing the mature white adipocyte marker Asc-1 that showed a low ability to differentiate into beige adipocytes compared to Asc-1 negative cells in vitro. Loss of Asc-1 in subcutaneous preadipocytes resulted in spontaneous differentiation of beige adipocytes in vitro and in vivo. Mechanistically, this was mediated by a function of the amino acid transporter ASC-1 specifically in proliferating preadipocytes involving the intracellular accumulation of the ASC-1 cargo D-serine.


2020 ◽  
Vol 65 (3) ◽  
pp. 97-107
Author(s):  
Yuanyuan Huang ◽  
Hanlin Zhang ◽  
Meng Dong ◽  
Lei Zhang ◽  
Jun Lin ◽  
...  

White adipose tissue (WAT) browning may have beneficial effects for treating metabolic syndrome. miRNA are important regulators of the differentiation, development, and function of brown and beige adipocytes. Here, we found that the cold-inducible miRNA17-92 cluster is enriched in brown adipose tissue (BAT) compared with WAT. Overexpression of the miR17-92 cluster in C3H10T1/2 cells, a mouse mesenchymal stem cell line, enhanced the thermogenic capacity of adipocytes. Furthermore, we observed a significant reduction in adiposity in adipose tissue-specific miR17-92 cluster transgenic (TG) mice. This finding is partly explained by dramatic increases in white fat browning and energy expenditure. Interestingly, the miR17-92 cluster stimulated WAT browning without altering BAT activity in mice. In addition, when we removed the intrascapular BAT (iBAT), the TG mice could maintain their body temperature well under cold exposure. At the molecular level, we found that the miR17-92 cluster targets Rb1, a beige cell repressor in WAT. The present study reveals a critical role for the miR17-92 cluster in regulating WAT browning. These results may be helpful for better understanding the function of beige fat, which could compensate for the lack of BAT in humans, and may open new avenues for combatting metabolic syndrome.


2014 ◽  
Vol 306 (4) ◽  
pp. E363-E372 ◽  
Author(s):  
Ruidan Xue ◽  
Yun Wan ◽  
Shuo Zhang ◽  
Qiongyue Zhang ◽  
Hongying Ye ◽  
...  

There are two different types of fat present in mammals: white adipose tissue, the primary site of energy storage, and brown adipose tissue, which is specializes in energy expenditure. Factors that specify the developmental fate and function of brown fat are poorly understood. Bone morphogenic proteins (BMPs) play an important role in adipogenesis. While BMP4 is capable of triggering commitment of stem cells to the white adipocyte lineage, BMP7 triggers commitment of progenitor cells to a brown adipocyte lineage and activates brown adipogenesis. To investigate the differential effects of BMPs on the development of adipocytes, C3H10T1/2 pluripotent cells were pretreated with BMP4 and BMP7, followed by different adipogenic induction cocktails. Both BMP4 and BMP7 unexpectedly activated a full program of brown adipogenesis, including induction of the brown fat-defining marker uncoupling protein-1 (UCP1), increasing the expression of early regulators of brown fat fate PRDM16 (PR domain-containing 16) and induction of mitochondrial biogenesis and function. Implantation of BMP4-pretreated C3H10T1/2 cells into nude mice resulted in the development of adipose tissue depots containing UCP1-positive brown adipocytes. Interestingly, BMP4 could also induce brown fat-like adipocytes in both white and brown preadipocytes, thereby decreasing the classical brown adipocyte marker Zic1 and increasing the recently identified beige adipocyte marker TMEM26. The data indicate an important role for BMP4 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro and offers a potentially new therapeutic approach for the treatment of obesity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linxin Xu ◽  
Chaofei Xu ◽  
Xiangyang Liu ◽  
Xiaoyu Li ◽  
Ting Li ◽  
...  

Background: White adipose tissue (WAT) browning is a promising target for obesity prevention and treatment. Empagliflozin has emerged as an agent with weight-loss potential in clinical and in vivo studies, but the mechanisms underlying its effect are not fully understood. Here, we investigated whether empagliflozin could induce WAT browning and mitochondrial alterations in KK Cg-Ay/J (KKAy) mice, and explored the mechanisms of its effects.Methods: Eight-week-old male KKAy mice were administered empagliflozin or saline for 8 weeks and compared with control C57BL/6J mice. Mature 3T3-L1 adipocytes were treated in the presence or absence of empagliflozin. Mitochondrial biosynthesis, dynamics, and function were evaluated by gene expression analyses, fluorescence microscopy, and enzymatic assays. The roles of adenosine monophosphate–activated protein kinase (AMPK) and peroxisome proliferator–activated receptor-γ coactivator-1-alpha (PGC-1α) were determined through AICAR (5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside)/Compound C and RNA interference, respectively.Results: Empagliflozin substantially reduced the bodyweight of KKAy mice. Mice treated with empagliflozin exhibited elevated cold-induced thermogenesis and higher expression levels of uncoupling protein 1 (UCP1) and other brown adipose tissue signature proteins in epididymal and perirenal WAT, which was an indication of browning in these WAT depots. At the same time, empagliflozin enhanced fusion protein mitofusin 2 (MFN2) expression, while decreasing the levels of the fission marker phosphorylated dynamin-related protein 1 (Ser616) [p-DRP1 (Ser616)] in epididymal and perirenal WAT. Empagliflozin also increased mitochondrial biogenesis and fusion, improved mitochondrial integrity and function, and promoted browning of 3T3-L1 adipocytes. Further, we found that AMPK signaling activity played an indispensable role in empagliflozin-induced browning and mitochondrial biogenesis, and that PGC-1α was required for empagliflozin-induced fusion. Whether empagliflozin activates AMPK by inhibition of SGLT2 or by independent mechanisms remains to be tested.Conclusion: Our results suggest that empagliflozin is a promising anti-obesity treatment, which can immediately induce WAT browning mitochondrial biogenesis, and regulate mitochondrial dynamics.


2021 ◽  
Vol 5 (1) ◽  
pp. 001-007
Author(s):  
Mishra A ◽  
Shestopalov AV ◽  
Gaponov AM ◽  
Alexandrov IA ◽  
Roumiantsev SA

Background: Adipose tissue is one of the main sites of energy homeostasis that regulates whole body metabolism with the help of adipokines. Disruption in its proper functioning results in adipose tissue remodeling (primarily hypertrophy and hyperplasia) which directly influences the secretion of said adipokines. Obesity characterized as chronic low-grade inflammation of the adipose tissue is one such condition that has far reaching effects on whole body metabolism. Inflammation in turn results in immune cells infiltrating into the tissue and further promoting adipocyte dysfunction. Purpose: In our study we explored this adipose tissue-innate immunity axis by differentiating adipose tissue derived stem cells (ADSCs) into white and beige adipocytes. We further stimulated our cultures with lipopolysaccharide (LPS), flagellin, or meteorin-like, glial cell differentiation regulator (METRNL) to trigger an inflammatory response. We then evaluated Toll-like receptor (TLR) mRNA expression and secretion of interleukin (IL-6), interleukin-8 (IL-8), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in these cultures. Results: We found that TLR2 is the highest expressed receptor in adipocytes. Further, LPS and METRNL are strong activators of TLR2 in white and beigeBMP7(-) adipocytes. TLR4 was not significantly expressed in any of our cultures despite LPS stimulation. TLR9 expression is upregulated in ADSCs upon LPS and METRNL stimulation. IL-6 and IL-8 secretion is increased upon LPS stimulation in white adipocytes. METRNL activates both IL-6 and IL-8 expression in adipocyte cultures. Lastly, BDNF and NGF is secreted by all adipocyte cultures with beigeBMP7(-) and beigeBMP7(+) secreting slightly higher amounts in comparison to white adipocytes. Conclusion: ADSCs and adipocytes alike are capable of expressing TLRs, but white adipocytes remain the highest expressing in both control and stimulated cultures. TLR2 is highly expressed in white and beige adipocytes whereas TLR4 showed no significant expression. LPS and METRNL trigger IL-6 and IL-8 secretion in adipocytes. Products of white adipocyte “browning” are capable of secreting higher amounts of BDNF and NGF in comparison to white adipocytes.


2012 ◽  
Vol 303 (8) ◽  
pp. E1053-E1060 ◽  
Author(s):  
Valentina Gburcik ◽  
William P. Cawthorn ◽  
Jan Nedergaard ◽  
James A. Timmons ◽  
Barbara Cannon

The transcription factor Tbx15 is expressed predominantly in brown adipose tissue and in those white adipose depots that are capable of giving rise to brown-in-white (“brite”/“beige”) adipocytes. Therefore, we have investigated a possible role here of Tbx15 in brown and brite adipocyte differentiation in vitro. Adipocyte precursors were isolated from interscapular and axilliary brown adipose tissues, inguinal white (“brite”) adipose tissue, and epididymal white adipose tissue in 129/Sv mouse pups and differentiated in culture. Differentiation was enhanced by chronic treatment with the PPARγ agonist rosiglitazone plus the sympathetic neurotransmitter norepinephrine. Using short interfering RNAs (siRNA) directed toward Tbx15 in these primary adipocyte cultures, we decreased Tbx15 expression >90%. This resulted in reduced expression levels of adipogenesis markers (PPARγ, aP2). Importantly, Tbx15 knockdown reduced the expression of brown phenotypic marker genes (PRDM16, PGC-1α, Cox8b/Cox4, UCP1) in brown adipocytes and even more markedly in inguinal white adipocytes. In contrast, Tbx15 knockdown had no effect on white adipocytes originating from a depot that is not brite competent in vivo (epididymal). Therefore, Tbx15 may be essential for the development of the adipogenic and thermogenic programs in adipocytes/adipomyocytes capable of developing brown adipocyte features.


Endocrinology ◽  
2012 ◽  
Vol 154 (2) ◽  
pp. 698-708 ◽  
Author(s):  
Laura Mikkonen ◽  
Johanna Hirvonen ◽  
Olli A. Jänne

Properly functioning adipose tissue is essential for normal insulin sensitivity of the body. When mice are kept on high-fat diet (HFD), adipose tissue expands, adipocytes increase in size and number, and the mice become obese. Many of these changes are mediated by the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), the activity of which is regulated by multiple posttranslational modifications, including SUMOylation. To address the role of small ubiquitin-like modifier-1 (SUMO-1) in PPARγ function in vivo, particularly in fat cell biology, we subjected Sumo1-knockout mice to HFD. Sumo1-null mice gained less weight and had smaller and fewer adipocytes in their gonadal fat tissue on HFD, but their glucose tolerance was similar to that of wild-type littermates. Adipogenesis was impaired in Sumo1-null cells, and expression of PPARγ target genes was attenuated. In addition, both Sumo1-null cells and Sumo1-null mice responded less efficiently to rosiglitazone, a PPARγ agonist. These findings indicate that SUMO-1 is important also for transcriptional activation by the PPARγ signaling pathway and not only for trans-repressive functions of PPARγ as previously reported.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1640 ◽  
Author(s):  
Siyu Xie ◽  
Yuan Li ◽  
Wendi Teng ◽  
Min Du ◽  
Yixuan Li ◽  
...  

Promoting white-to-beige adipocyte transition is a promising approach for obesity treatment. Although Liensinine (Lie), a kind of isoquinoline alkaloid, has been reported to affect white-to-beige adipocyte transition, its effects on inhibiting beige adipocytes recovering to white adipocytes and maintaining the characteristics of beige adipocyte remain unclear. Therefore, we explored the effects and underlying mechanism of Lie on beige adipocyte maintenance in vitro and in vivo. Here, we first demonstrated that after white adipocytes turned to beige adipocytes by rosiglitazone (Rosi) stimuli, beige adipocytes gradually lost their characteristics and returned to white adipocytes again once Rosi was withdrawn. We found that Lie retained high levels of uncoupling protein 1 (UCP1) and mitochondrial oxidative phosphorylation complex I, II, III, IV and V (COX I–V), oxygen consumption rate (OCR) after Rosi withdrawal. In addition, after Rosi withdrawal, the beige-to-white adipocyte transition was coupled to mitophagy, while Lie inhibited mitophagy flux by promoting the accumulation of pro-cathepsin B (pro-CTSB), pro-cathepsin D (pro-CTSD) and pro-cathepsin L (pro-CTSL), ultimately maintaining the beige adipocytes characteristics in vitro. Moreover, through blocking mitophagy flux, Lie significantly retained the molecular characteristics of beige adipocyte, reduced body weight gain rate and enhanced energy expenditure after stimuli withdrawal in vivo. Together, our data showed that Lie inhibited lysosomal cathepsin activity by promoting the accumulation of pro-CTSB, pro-CTSD and pro-CTSL, which subsequently inhibited mitophagy flux, and ultimately inhibited the beige adipocytes recovering to white adipocytes and maintained the characteristics of beige adipocyte after stimuli withdrawal. In conclusion, by blocking lysosome-mediated mitophagy, Lie inhibits beige adipocytes recovering to white adipocytes and may be a potential candidate for preventing high fat diet induced obesity.


Sign in / Sign up

Export Citation Format

Share Document