scholarly journals Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria

2017 ◽  
Vol 114 (27) ◽  
pp. 7025-7030 ◽  
Author(s):  
Nicholas C. Harris ◽  
Michio Sato ◽  
Nicolaus A. Herman ◽  
Frederick Twigg ◽  
Wenlong Cai ◽  
...  

A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.


2007 ◽  
Vol 190 (1) ◽  
pp. 251-263 ◽  
Author(s):  
Lei Li ◽  
Wei Deng ◽  
Jie Song ◽  
Wei Ding ◽  
Qun-Fei Zhao ◽  
...  

ABSTRACT Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis.



2007 ◽  
Vol 73 (11) ◽  
pp. 3460-3469 ◽  
Author(s):  
Yi-Qiang Cheng ◽  
Min Yang ◽  
Andrea M. Matter

ABSTRACT A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.



eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hyun Bong Park ◽  
Corey E Perez ◽  
Karl W Barber ◽  
Jesse Rinehart ◽  
Jason M Crawford

Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria.



2017 ◽  
Author(s):  
Nicholas C. Harris ◽  
Michio Sato ◽  
Nicolaus A. Herman ◽  
Frederick Twigg ◽  
Wenlong Cai ◽  
...  

AbstractA putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in intro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a new family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a non-heme iron(II)-dependent oxidase homologue, and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a non-ribosomal peptide synthetase (NRPS). In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.Significance StatementMycobacterium tuberculosis is the leading causative agent of tuberculosis (TB), of which millions of deaths occur annually. A putative lipopeptide biosynthetic gene cluster has been shown to be essential for the survival of this pathogen in hosts, and homologous gene clusters have also been found in all pathogenic mycobacteria and other species of Actinobacteria. We have identified the function of these gene clusters in making a new family of isonitrile lipopeptides. The biosynthesis has several unique features, including an unprecedented mechanism for isonitrile synthesis. Our results have further suggested that these biosynthetic gene clusters play a role in metal transport, and thus have shed light on a new metal transport system that is crucial for virulence of pathogenic mycobacteria.





Author(s):  
Rebecca Devine ◽  
Hannah McDonald ◽  
Zhiwei Qin ◽  
Corinne Arnold ◽  
Katie Noble ◽  
...  

AbstractThe formicamycins are promising antibiotics with potent activity against Gram-positive pathogens including VRE and MRSA and display a high barrier to selection of resistant isolates. They were first identified in Streptomyces formicae KY5, which produces the formicamycins at low levels on solid agar but not in liquid culture, thus hindering further investigation of these promising antibacterial compounds. We hypothesised that by understanding the organisation and regulation of the for biosynthetic gene cluster, we could rationally refactor the cluster to increase production levels. Here we report that the for biosynthetic gene cluster consists of 24 genes expressed on nine transcripts. Seven of these transcripts, including those containing all the major biosynthetic genes, are repressed by the MarR-regulator ForJ which also controls the expression of the ForGF two-component system that initiates biosynthesis. A third cluster-situated regulator, ForZ, autoregulates and controls production of the putative MFS transporter ForAA. Consistent with these findings, deletion of forJ increased formicamycin biosynthesis 5-fold, while over-expression of forGF in the ΔforJ background increased production 10-fold compared to the wild-type. De-repression by deleting forJ also switched on biosynthesis in liquid-culture and induced the production of two novel formicamycin congeners. By combining mutations in regulatory and biosynthetic genes, six new biosynthetic precursors with antibacterial activity were also isolated. This work demonstrates the power of synthetic biology for the rational redesign of antibiotic biosynthetic gene clusters both to engineer strains suitable for fermentation in large scale bioreactors and to generate new molecules.ImportanceAntimicrobial resistance is a growing threat as existing antibiotics become increasingly ineffective against drug resistant pathogens. Here we determine the transcriptional organisation and regulation of the gene cluster encoding biosynthesis of the formicamycins, promising new antibiotics with activity against drug resistant bacteria. By exploiting this knowledge, we construct stable mutant strains which over-produce these molecules in both liquid and solid culture whilst also making some new compound variants. This will facilitate large scale purification of these molecules for further study including in vivo experiments and the elucidation of their mechanism of action. Our work demonstrates that understanding the regulation of natural product biosynthetic pathways can enable rational improvement of the producing strains.



2018 ◽  
Vol 200 (21) ◽  
Author(s):  
Karla J. Esquilín-Lebrón ◽  
Tye O. Boynton ◽  
Lawrence J. Shimkets ◽  
Michael G. Thomas

ABSTRACTOne mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 fromMyxococcus xanthusDK1622 for characterization. TheM. xanthusDK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination ofin vivoandin vitroassays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping ofM. xanthusDK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a “universal” MLP for generating functional hybrid NRPSs.IMPORTANCEMbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP fromMyxococcus xanthusDK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a “universal” MLP during the construction of functional hybrid NRPSs.



Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 388 ◽  
Author(s):  
Li Liao ◽  
Shiyuan Su ◽  
Bin Zhao ◽  
Chengqi Fan ◽  
Jin Zhang ◽  
...  

Rare actinobacterial species are considered as potential resources of new natural products. Marisediminicola antarctica ZS314T is the only type strain of the novel actinobacterial genus Marisediminicola isolated from intertidal sediments in East Antarctica. The strain ZS314T was able to produce reddish orange pigments at low temperatures, showing characteristics of carotenoids. To understand the biosynthetic potential of this strain, the genome was completely sequenced for data mining. The complete genome had 3,352,609 base pairs (bp), much smaller than most genomes of actinomycetes. Five biosynthetic gene clusters (BGCs) were predicted in the genome, including a gene cluster responsible for the biosynthesis of C50 carotenoid, and four additional BGCs of unknown oligosaccharide, salinixanthin, alkylresorcinol derivatives, and NRPS (non-ribosomal peptide synthetase) or amino acid-derived compounds. Further experimental characterization indicated that the strain may produce C.p.450-like carotenoids, supporting the genomic data analysis. A new xanthorhodopsin gene was discovered along with the analysis of the salinixanthin biosynthetic gene cluster. Since little is known about this genus, this work improves our understanding of its biosynthetic potential and provides opportunities for further investigation of natural products and strategies for adaptation to the extreme Antarctic environment.



2011 ◽  
Vol 77 (22) ◽  
pp. 8034-8040 ◽  
Author(s):  
David P. Fewer ◽  
Julia Österholm ◽  
Leo Rouhiainen ◽  
Jouni Jokela ◽  
Matti Wahlsten ◽  
...  

ABSTRACTCyanobacteria are a rich source of natural products with interesting pharmaceutical properties. Here, we report the identification, sequencing, annotation, and biochemical analysis of the nostophycin (npn) biosynthetic gene cluster. Thenpngene cluster spans 45.1 kb and consists of three open reading frames encoding a polyketide synthase, a mixed polyketide nonribosomal peptide synthetase, and a nonribosomal peptide synthetase. The genetic architecture and catalytic domain organization of the proteins are colinear in arrangement, with the putative order of the biosynthetic assembly of the cyclic heptapeptide. NpnB contains an embedded monooxygenase domain linking nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) catalytic domains and predicted here to hydroxylate the nostophycin during assembly. Expression of the adenylation domains and subsequent substrate specificity assays support the involvement of this cluster in nostophycin biosynthesis. Biochemical analyses suggest that the loading substrate of NpnA is likely to be a phenylpropanoic acid necessitating deletion of a carbon atom to explain the biosynthesis of nostophycin. Biosyntheses of nostophycin and microcystin resemble each other, but the phylogenetic analyses suggest that they are distantly related to one another.



Sign in / Sign up

Export Citation Format

Share Document