scholarly journals X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors

2019 ◽  
Vol 116 (34) ◽  
pp. 16823-16828 ◽  
Author(s):  
Samana Shrestha ◽  
Jing Wu ◽  
Bindeshwar Sah ◽  
Adam Vanasse ◽  
Leon N Cooper ◽  
...  

Photodynamic therapy (PDT), a treatment that uses a photosensitizer, molecular oxygen, and light to kill target cells, is a promising cancer treatment method. However, a limitation of PDT is its dependence on light that is not highly penetrating, precluding the treatment of tumors located deep in the body. Copper-cysteamine nanoparticles are a new type of photosensitizer that can generate cytotoxic singlet oxygen molecules upon activation by X-rays. In this paper, we report on the use of copper-cysteamine nanoparticles, designed to be targeted to tumors, for X-ray–induced PDT. In an in vivo study, results show a statistically significant reduction in tumor size under X-ray activation of pH-low insertion peptide–conjugated, copper-cysteamine nanoparticles in mouse tumors. This work confirms the effectiveness of copper-cysteamine nanoparticles as a photosensitizer when activated by radiation and suggests that these Cu-Cy nanoparticles may be good candidates for PDT in deeply seated tumors when combined with X-rays and conjugated to a tumor-targeting molecule.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3212
Author(s):  
Daria Kirsanova ◽  
Vladimir Polyakov ◽  
Vera Butova ◽  
Peter Zolotukhin ◽  
Anna Belanova ◽  
...  

It is known that the initiation of photodynamic therapy (PDT) in deep-seated tumors requires the use of X-rays to activate the reactive oxygen species generation in deep tissues. The aim of this paper is to synthesize X-ray nanophosphors and analyze their structural and luminescence characteristics to push the PDT process deep into the body. The article deals with BaGdF5:Eu3+, BaGdF5:Sm3+, and BaGdF5:Tb3+ nanophosphors synthesized using microwave synthesis. It is found that the nanoparticles are biocompatible and have sizes 5–17 nm. However, according to the analysis of X-ray excited optical luminescence, BaGdF5:Sm3+ nanophosphors will not be effective for treating deep-seated tumors. Thus, BaGdF5:Eu3+ and BaGdF5:Tb3+ nanoparticles meet the requirements for the subsequent production of nanocomposites based on them that can be used in X-ray photodynamic therapy.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


2020 ◽  
Author(s):  
Johannes Karges ◽  
Shi Kuang ◽  
Federica Maschietto ◽  
Olivier Blacque ◽  
Ilaria Ciofini ◽  
...  

<div>The use of photodynamic therapy (PDT) against cancer has received increasing attention overthe recent years. However, the application of the currently approved photosensitizers (PSs) is somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl 2,2´-bipyridine ligands showed impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While non-toxic in the dark, these compounds were found phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2 Photon excitation.</div>


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


1943 ◽  
Vol 78 (4) ◽  
pp. 285-304 ◽  
Author(s):  
William F. Friedewald ◽  
Rubert S. Anderson

The virus-induced papillomas of cottontail as well as domestic rabbits regress completely within a few weeks when exposed to 5,000 r of x-ray irradiation. The x-rays do not immediately kill the papilloma cells, but lead to death by inhibiting cellular division and producing pathological changes in the cells which then continue to differentiate. The virus associated with the growths, however, not only persists in undiminished amount during regression, but often an increased yield of it can be obtained on extraction. The fibroma virus in crude extracts or in vivo is inactivated by far less irradiation than the papilloma virus. 10,000 r destroys 90 per cent or more of the infectivity of the fibroma virus, whereas at least 100,000 r is required to inactivate 50 per cent of the papilloma virus in extracts containing about the same amount of protein. No variant of the papilloma virus or fibroma virus has been encountered as a result of the irradiation.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (2) ◽  
pp. 305-308
Author(s):  
Derek Harwood-Nash ◽  
Herman Grossman ◽  
Alvin Felman ◽  
John Kirkpatrick ◽  
Leonard Swischuk

Computerized tomography (CT), a technique conceptualized by Oldendorf in 19611 and developed by Hounsfield2 of EMI-Tronics Inc. (EMI) Central Research Laboratories, has proven to be a successful innovation in neuroradiology. Reviews by Ambrose3 in England and by Baker et al.4 and by New et al.5 in the United States have clearly demonstrated the value of this new modality in neuroradiological diagnosis. In 1975 Houser et al.6 and Harwood-Nash et al.7 provided the initial clinical and radiological data about CT in infants and children. More recently this technique has been extended to the study of tissues and organs in the body other than those in the head. This has been accomplished by modification of the original machine into a whole-body CT system. Early reviews by Ledley et al.8 and by Alfidi et al.9 suggest a significant potential for diagnosis of lesions in the abdomen, pelvis, and thorax. The advantages of CT are that it is less invasive than standard special diagnostic radiological procedures and that for the first time it provides in vivo information regarding the content and the characteristics of tissue composing organs and masses. DESCRIPTION OF EQUIPMENT In conventional radiography an image is made on radiographic film by an attenuated X-ray beam. In passing through a core of tissue, each ray of the beam is attenuated as it is absorbed and scattered by the tissue in its path. The intensity of the transmitted ray depends on the sum total of X-ray attenuation by all the different soft tissues in its path.


2021 ◽  
Vol 1040 ◽  
pp. 61-67
Author(s):  
Anna B. Vlasenko ◽  
Vadim V. Bakhmetyev ◽  
Sergey V. Mjakin

Photodynamic therapy (PDT) is a promising modern method for treatment of oncological, bacterial, fungal and viral diseases. However, its application is limited to diseases with superficial localization since the body tissues are not transparent for visible light. To address this problem and extend PDT application to abdominal diseases, an enhanced method of X-ray photodynamic therapy (XRPDT) is suggested, involving X-ray radiation easily penetrating the body tissues. The implementation of this approach requires the development of a pharmacological drug including a photosensitizer stimulated by visible light to yield active oxygen and a nanosized phosphor converting X-ray radiation into visible light with the wavelength required for the photosensitizer activation. This study is aimed at obtaining X-ray stimulated phosphors with nanosized particles suitable for XRPDT application. For this purpose, Y2O3:Eu phosphors were synthesized via hydrothermal processing of the corresponding mixed acetate followed by annealing. To prevent from the undesirable agglomeration of the particles in the course of hydrothermal synthesis and subsequent annealing, different techniques were used, including rapid thermal annealing (RTA), microwave annealing and addition of finely dispersed pyrogenic silica (aerosil) to the phosphor. The microwave annealing was carried out using a special installation including a resonance chamber for maintaining a standing wave of microwave radiation. The performed research allowed the determination of hydrothermal processing optimal duration affording the synthesis of phosphors with the highest luminescence brightness. The application of microwave annealing is found to provide phosphors with a more perfect crystal structure compared with RTA. The developed method of Y2O3:Eu phosphor synthesis involving pyrogenic silica addition to the autoclave allowed the preparation of samples with the amorphous structure and significantly reduced the particle size without a considerable decrease in the luminescence brightness. The particle size of the phosphor synthesized with aerosil addition is less than 100 nm that allows its implementation in pharmacological drugs for XRPDT.


2021 ◽  
Author(s):  
Eric Da Silva

A hydroxyaptite [HAp; Ca5(PO4)3OH] phantom material was developed with the goal of improving the calibration protocol of the 125I-induced in vivo X-ray fluorescence (IVXRF) system of bone strontium quantification with further application to other IVXRF bone metal quantification systems, particulary those associated with bone lead quantification. It was found that calcium can be prepared pure of inherent contamination from strontium (and other elements) through a hydroxide precipitation producing pure Ca(OH)2, thereby, allowing for the production of a blank phantom which has not been available previously. The pure Ca(OH)2 can then be used for the preparation of pure CaHPO4 ⋅ 2H2O. A solid state pure HAp phantom can then be prepared by reaction of Ca(OH)2 and CaHPO4 ⋅ 2H2O mixed as to produce a Ca/P mole ratio of 1.67, that in HAp and the mineral phase of bone, in the presence of a setting solution prepared as to raise the total phosphate concentration of the solution by increasing the solubility CaHPO4 ⋅ 2H2O and thereby precipitating HAp. The procedure can only be used to prepare phantoms in which doping with the analyte does not disturb the Ca/P ratio substantially. In cases in which phantoms are to be prepared with high concentrations of strontium, the cement mixture can be modified as to introduce strontium in the form of Sr(OH)2 ⋅ 8H2O as to maintain a (Ca + Sr)/P ratio of 1.67. It was found by both X-ray diffraction spectrometry and Raman spectroscopy studies that strontium substitutes for calcium as in bone when preparing phantoms by this route. The necessity for the blank bone phantoms was assessed through the first blank bone phantom measurement and Monte Carlo simulations. It was found that for the 125I-induced IVXRF system of bone strontium quantification, the source, 125I brachytherapy seeds may be contributing coherently and incoherently scattered zirconium X-rays to the measured spectra, thereby requiring the use of the blank bone phantom as a means of improving the overall quantification methodology. Monte Carlo simulations were employed to evaluate any improvement by the introduction of HAp phantoms into the coherent normalization-based calibration procedure. It was found that HAp phantoms remove the need for a coherent conversion factor (CCF) thereby potentially increasing accuracy of the quantification. Further, it was found that in order for soft tissue attenuation corrections to be possible using spectroscopic information alone, HAp along with a suitable soft tissue surrogate material need to be employed. The HAp phantom material was used for the evaluations of portable X-ray analyzer systems for their potential for IVXRF quantification of lead and strontium with a focus on a comparison between tungsten, silver and rhodium target systems. Silver and rhodium target X-ray tube systems were found to be comparable for this quantification.


Author(s):  
Yue Hu ◽  
Yanmin Yang ◽  
Xiaoxiao Li ◽  
Xin Wang ◽  
Yunqian Li ◽  
...  

Here, we have discovered a X-ray excited long afterglow phosphor &beta;-NaYF4: Tb3+. After the irradiation of X-ray, the green emission can persist for more than 240 h. After 36 h, the afterglow intensity arrived at 0.69 mcd&bull;m-2, which can clearly be observed by naked eyes. Even after 84 h, the afterglow emission brightness still reached 0.087 mcd&bull;m-2. Also, combined with the results of thermoluminescence and photoluminescence, the super long afterglow emission of &beta;-NaYF4: Tb3+ can be ascribed to the tunneling model associated with F centers. More importantly, the super long green afterglow emission of &beta;-NaYF4: Tb3+ has been successfully used as in vivo light source to activate g-C3N4 for photodynamic therapy(PDT)and bacteria destruction. Furthermore, super long persistent luminescence of &beta;-NaYF4: Tb3+ could be repeatedly charged by X-ray for many circulations, which indicates that the phosphors have high photo stability under repeated cycles of alternating X-ray irradiation.


Nanoscale ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 2855-2860 ◽  
Author(s):  
Haibo Wang ◽  
Wei Lu ◽  
Tianmei Zeng ◽  
Zhigao Yi ◽  
Ling Rao ◽  
...  

A new type of multi-functional NaErF4 nanoprobe with enhanced red upconversion emission was developed and used for in vitro cell, in vivo X-ray and T2-weighted magnetic resonance imaging for the first time.


Sign in / Sign up

Export Citation Format

Share Document