scholarly journals Preserved capacity for learning statistical regularities and directing selective attention after hippocampal lesions

2019 ◽  
Vol 116 (39) ◽  
pp. 19705-19710 ◽  
Author(s):  
Nuttida Rungratsameetaweemana ◽  
Larry R. Squire ◽  
John T. Serences

Prior knowledge about the probabilistic structure of visual environments is necessary to resolve ambiguous information about objects in the world. Expectations based on stimulus regularities exert a powerful influence on human perception and decision making by improving the efficiency of information processing. Another type of prior knowledge, termed top-down attention, can also improve perceptual performance by facilitating the selective processing of relevant over irrelevant information. While much is known about attention, the mechanisms that support expectations about statistical regularities are not well-understood. The hippocampus has been implicated as a key structure involved in or perhaps necessary for the learning of statistical regularities, consistent with its role in various kinds of learning and memory. Here, we tested this hypothesis using a motion discrimination task in which we manipulated the most likely direction of motion, the degree of attention afforded to the relevant stimulus, and the amount of available sensory evidence. We tested memory-impaired patients with bilateral damage to the hippocampus and compared their performance with controls. Despite a modest slowing in response initiation across all task conditions, patients performed similar to controls. Like controls, patients exhibited a tendency to respond faster and more accurately when the motion direction was more probable, the stimulus was better attended, and more sensory evidence was available. Together, these findings demonstrate a robust, hippocampus-independent capacity for learning statistical regularities in the sensory environment in order to improve information processing.

2015 ◽  
Vol 112 (43) ◽  
pp. 13401-13406 ◽  
Author(s):  
Christoph Teufel ◽  
Naresh Subramaniam ◽  
Veronika Dobler ◽  
Jesus Perez ◽  
Johanna Finnemann ◽  
...  

Many neuropsychiatric illnesses are associated with psychosis, i.e., hallucinations (perceptions in the absence of causative stimuli) and delusions (irrational, often bizarre beliefs). Current models of brain function view perception as a combination of two distinct sources of information: bottom-up sensory input and top-down influences from prior knowledge. This framework may explain hallucinations and delusions. Here, we characterized the balance between visual bottom-up and top-down processing in people with early psychosis (study 1) and in psychosis-prone, healthy individuals (study 2) to elucidate the mechanisms that might contribute to the emergence of psychotic experiences. Through a specialized mental-health service, we identified unmedicated individuals who experience early psychotic symptoms but fall below the threshold for a categorical diagnosis. We observed that, in early psychosis, there was a shift in information processing favoring prior knowledge over incoming sensory evidence. In the complementary study, we capitalized on subtle variations in perception and belief in the general population that exhibit graded similarity with psychotic experiences (schizotypy). We observed that the degree of psychosis proneness in healthy individuals, and, specifically, the presence of subtle perceptual alterations, is also associated with stronger reliance on prior knowledge. Although, in the current experimental studies, this shift conferred a performance benefit, under most natural viewing situations, it may provoke anomalous perceptual experiences. Overall, we show that early psychosis and psychosis proneness both entail a basic shift in visual information processing, favoring prior knowledge over incoming sensory evidence. The studies provide complementary insights to a mechanism by which psychotic symptoms may emerge.


2015 ◽  
Author(s):  
Manivannan Subramaniyan ◽  
Alexander S. Ecker ◽  
Saumil S. Patel ◽  
R. James Cotton ◽  
Matthias Bethge ◽  
...  

AbstractWhen the brain has determined the position of a moving object, due to anatomical and processing delays, the object will have already moved to a new location. Given the statistical regularities present in natural motion, the brain may have acquired compensatory mechanisms to minimize the mismatch between the perceived and the real position of a moving object. A well-known visual illusion — the flash lag effect — points towards such a possibility. Although many psychophysical models have been suggested to explain this illusion, their predictions have not been tested at the neural level, particularly in a species of animal known to perceive the illusion. Towards this, we recorded neural responses to flashed and moving bars from primary visual cortex (V1) of awake, fixating macaque monkeys. We found that the response latency to moving bars of varying speed, motion direction and luminance was shorter than that to flashes, in a manner that is consistent with psychophysical results. At the level of V1, our results support the differential latency model positing that flashed and moving bars have different latencies. As we found a neural correlate of the illusion in passively fixating monkeys, our results also suggest that judging the instantaneous position of the moving bar at the time of flash — as required by the postdiction/motion-biasing model — may not be necessary for observing a neural correlate of the illusion. Our results also suggest that the brain may have evolved mechanisms to process moving stimuli faster and closer to real time compared with briefly appearing stationary stimuli.New and NoteworthyWe report several observations in awake macaque V1 that provide support for the differential latency model of the flash lag illusion. We find that the equal latency of flash and moving stimuli as assumed by motion integration/postdiction models does not hold in V1. We show that in macaque V1, motion processing latency depends on stimulus luminance, speed and motion direction in a manner consistent with several psychophysical properties of the flash lag illusion.


2018 ◽  
Vol 120 (1) ◽  
pp. 330-342
Author(s):  
Joshua Baker ◽  
Antonio Castro ◽  
Andrew K. Dunn ◽  
Suvobrata Mitra

Everyday cognitive tasks are frequently performed under dual-task conditions alongside continuous sensorimotor coordinations (CSCs) such as driving, walking, or balancing. Observed interference in these dual-task settings is commonly attributed to demands on executive function or attentional resources, but the time course and reciprocity of interference are not well understood at the level of information-processing components. Here we used electrophysiology to study the detailed chronometry of dual-task interference between a visual oddball task and a continuous visuomanual tracking task. The oddball task’s electrophysiological components were linked to underlying cognitive processes, and the tracking task served as a proxy for the continuous cycle of state monitoring and adjustment inherent to CSCs. Dual-tasking interfered with the oddball task’s accuracy and attentional processes (attenuated P2 and P3b magnitude and parietal alpha-band event-related desynchronization), but errors in tracking due to dual-tasking accrued at a later timescale and only in trials in which the target stimulus appeared and its tally had to be incremented. Interference between cognitive tasks and CSCs can be asymmetric in terms of timing as well as affected information-processing components. NEW & NOTEWORTHY Interference between cognitive tasks and continuous sensorimotor coordination (CSC) has been widely reported, but this is the first demonstration that the cognitive operation that is impaired by concurrent CSC may not be the one that impairs the CSC. Also demonstrated is that interference between such tasks can be temporally asymmetric. The asynchronicity of this interference has significant implications for understanding and mitigating loss of mobility in old age, and for rehabilitation for neurological impairments.


2014 ◽  
Vol 116 (7) ◽  
pp. 1205-1219 ◽  
Author(s):  
Lisa M. Soederberg Miller

Purpose – Quantitative information on nutrition labels (nutrition facts panels (NFPs)) is often conveyed in the form of absolute weights (i.e. milligrams or grams) and reference values (i.e. per cent daily values (%DVs)) which provide information regarding nutrient levels within the context of a total daily diet. Some evidence suggests that %DVs are preferred over the weights and may be better at communicating nutrition information. However, age differences are often neglected in past work, thus limiting the understanding how effectively NFPs communicate quantitative information across adulthood. The paper aims to discuss these issues. Design/methodology/approach – Using eye tracking methodology, the present study examined age and preference differences in attention to weights and %DVs on NFPs during two healthfulness judgement tasks. The extent to which attention predicted judgement accuracy was explored and findings were compared to two additional predictors, prior knowledge and NFP numeracy skills. Findings – Although individuals paid attention to both types of quantitative information, attention to %DVs, but not weights, predicted accuracy, on both tasks. For older adults only, preferences for %DVs were related to %DV attention, and this in turn supported accuracy on the single-NFP task. Originality/value – These data show that %DVs are important for healthfulness judgements across age but that preferences for %DVs, together with attention to %DVs, are particularly important for older adults.


2011 ◽  
Vol 23 (7) ◽  
pp. 1794-1807 ◽  
Author(s):  
Masayuki Watanabe ◽  
Douglas P. Munoz

Several cognitive models suggest that saccade RTs are controlled flexibly not only by mechanisms that accumulate sensory evidence after the appearance of a sensory stimulus (poststimulus mechanisms) but also by mechanisms that preset the saccade control system before the sensory event (prestimulus mechanisms). Consistent with model predictions, neurons in structures tightly related to saccade initiation, such as the superior colliculus and FEF, have poststimulus and prestimulus activities correlated with RTs. It has been hypothesized that the BG influence the saccade initiation process by controlling both poststimulus and prestimulus activities of superior colliculus and FEF neurons. To examine this hypothesis directly, we delivered electrical microstimulation to the caudate nucleus, the input stage of the oculomotor BG, while monkeys performed a prosaccade (look toward a visual stimulus) and antisaccade (look away from the stimulus) paradigm. Microstimulation applied after stimulus appearance (poststimulus microstimulation) prolonged RTs regardless of saccade directions (contra/ipsi) or task instructions (pro/anti). In contrast, microstimulation applied before stimulus appearance (prestimulus microstimulation) shortened RTs, although the effects were limited to several task conditions. The analysis of RT distributions using the linear approach to threshold with ergodic rate model revealed that poststimulus microstimulation prolonged RTs by reducing the rate of rise to the threshold for saccade initiation, whereas fitting results for prestimulus microstimulation were inconsistent across different task conditions. We conclude that both poststimulus and prestimulus activities of caudate neurons are sufficient to control saccade RTs.


Author(s):  
Armando Bertone ◽  
Jacalyn Guy ◽  
Christina Marcone

During typical development, the efficiency with which distinct image attributes, objects such as faces, and emotions are analyzed depends on the development of ocular functioning (sensory level) and brain mechanisms mediating perceptual abilities (neural level). Compared to typically developing individuals, ocular differences are more frequent in persons with Down syndrome (DS) and include an increased incidence of refractive errors, i.e. hyperopia and myopia, and difficulties with accommodation (focusing up close). In most cases, these conditions can be corrected with bifocals, resulting in greatly improved literary skills that underlie reading, particularly for younger persons with DS. In addition, individuals with DS seem to benefit from the spatially structured presentation of visual material when learning, another accommodation that can be implemented during instruction. Finally, although not specific to DS, young children and adults with DS generally identify and recognize emotions less efficiently than do persons without DS. However, among persons with DS, these difficulties seem to be more pronounced for more intense emotions, including fear and anger. In sum, visual profiles based on sensory and perceptual performance can advance our understanding of atypical information processing among persons with DS, as well as provide practical information aimed at improving learning and instruction.


2016 ◽  
Vol 115 (3) ◽  
pp. 1703-1712 ◽  
Author(s):  
S. McIntyre ◽  
I. Birznieks ◽  
R. M. Vickery ◽  
A. O. Holcombe ◽  
T. Seizova-Cajic

Neurophysiological studies in primates have found that direction-sensitive neurons in the primary somatosensory cortex (SI) generally increase their response rate with increasing speed of object motion across the skin and show little evidence of speed tuning. We employed psychophysics to determine whether human perception of motion direction could be explained by features of such neurons and whether evidence can be found for a speed-tuned process. After adaptation to motion across the skin, a subsequently presented dynamic test stimulus yields an impression of motion in the opposite direction. We measured the strength of this tactile motion aftereffect (tMAE) induced with different combinations of adapting and test speeds. Distal-to-proximal or proximal-to-distal adapting motion was applied to participants' index fingers using a tactile array, after which participants reported the perceived direction of a bidirectional test stimulus. An intensive code for speed, like that observed in SI neurons, predicts greater adaptation (and a stronger tMAE) the faster the adapting speed, regardless of the test speed. In contrast, speed tuning of direction-sensitive neurons predicts the greatest tMAE when the adapting and test stimuli have matching speeds. We found that the strength of the tMAE increased monotonically with adapting speed, regardless of the test speed, showing no evidence of speed tuning. Our data are consistent with neurophysiological findings that suggest an intensive code for speed along the motion processing pathways comprising neurons sensitive both to speed and direction of motion.


2020 ◽  
Vol 10 (8) ◽  
pp. 509
Author(s):  
Daniela Sammler ◽  
Stefan Elmer

Neurocomparative music and language research has seen major advances over the past two decades. The goal of this Special Issue “Advances in the Neurocognition of Music and Language” was to showcase the multiple neural analogies between musical and linguistic information processing, their entwined organization in human perception and cognition and to infer the applicability of the combined knowledge in pedagogy and therapy. Here, we summarize the main insights provided by the contributions and integrate them into current frameworks of rhythm processing, neuronal entrainment, predictive coding and cognitive control.


2021 ◽  
Vol 15 ◽  
Author(s):  
Scott A. Miles ◽  
David S. Rosen ◽  
Shaun Barry ◽  
David Grunberg ◽  
Norberto Grzywacz

Previous work demonstrates that music with more surprising chords tends to be perceived as more enjoyable than music with more conventional harmonic structures. In that work, harmonic surprise was computed based upon a static distribution of chords. This would assume that harmonic surprise is constant over time, and the effect of harmonic surprise on music preference is similarly static. In this study we assess that assumption and establish that the relationship between harmonic surprise (as measured according to a specific time period) and music preference is not constant as time goes on. Analyses of harmonic surprise and preference from 1958 to 1991 showed increased harmonic surprise over time, and that this increase was significantly more pronounced in preferred songs. Separate analyses showed similar increases over the years from 2000 to 2019. As such, these findings provide evidence that the human perception of tonality is influenced by exposure. Baseline harmonic expectations that were developed through listening to the music of “yesterday” are violated in the music of “today,” leading to preference. Then, once the music of “today” provides the baseline expectations for the music of “tomorrow,” more pronounced violations—and with them, higher harmonic surprise values—become associated with preference formation. We call this phenomenon the “Inflationary-Surprise Hypothesis.” Support for this hypothesis could impact the understanding of how the perception of tonality, and other statistical regularities, are developed in the human brain.


Sign in / Sign up

Export Citation Format

Share Document