scholarly journals Greigite (Fe3S4) is thermodynamically stable: Implications for its terrestrial and planetary occurrence

2020 ◽  
Vol 117 (46) ◽  
pp. 28645-28648
Author(s):  
Tamilarasan Subramani ◽  
Kristina Lilova ◽  
Mykola Abramchuk ◽  
Kurt D. Leinenweber ◽  
Alexandra Navrotsky

Iron sulfide minerals are widespread on Earth and likely in planetary bodies in and beyond our solar system. Using measured enthalpies of formation for three magnetic iron sulfide phases: bulk and nanophase Fe3S4spinel (greigite), and its high-pressure monoclinic phase, we show that greigite is a stable phase in the Fe–S phase diagram at ambient temperature. The thermodynamic stability and low surface energy of greigite supports the common occurrence of fine-grained Fe3S4in many anoxic terrestrial settings. The high-pressure monoclinic phase, thermodynamically metastable below about 3 GPa, shows a calculated negative P-T slope for its formation from the spinel. The stability of these three phases suggests their potential existence on Mercury and their magnetism may contribute to its present magnetic field.

2015 ◽  
Vol 1130 ◽  
pp. 89-92
Author(s):  
David Dreisinger ◽  
Amanda Dreisinger ◽  
Caleb Dreisinger

Ferric sulfate is a very useful reagent for mineral leaching and metal recovery. Ferric sulfate may be used as an oxidative leaching agent for uranium, zinc, copper, nickel and other ores. Ferric ion is a modestly strong oxidant. Similarly, the use of ferric co-precipitation to stabilize arsenic, selenium and other species is in wide use. The demand for ferric sulfate for this application is increasing. Pyrite and pyrrhotite represent minerals that are widely available as sources of soluble iron to provide ferric sulfate for leaching and for iron co-precipitation. The use of biological processes for oxidation of pyrite is well established. However, the common goal is to use biological oxidation to liberate a valuable material (eg. Gold locked in arsenopyrite or pyrite). Much less attention has been paid to production of soluble iron for leaching of other minerals or for use as a precipitant. The use of chemical processes such as atmospheric and pressure oxidation may also be used to generate ferric sulfate from iron sulfide minerals. In this paper the use of biological and chemical processing for production of ferric sulfate will be reviewed and discussed.


1979 ◽  
Vol 16 (3) ◽  
pp. 575-584 ◽  
Author(s):  
Joseph J. Donovan ◽  
Ginette Lajoie

It has been proposed that iron hydroxides act as cementing agents in Champlain Sea clays, causing brittle behaviour and high sensitivities. Study of interbedded turbiditic sandy and clayey strata of the Champlain Sea disputes this contention. Ground waters flowing through these sandy interbeds have high pH and are sodium bicarbonate dominant and strongly reduced, with a calculated Eh of −276 to −343 mV, using the sulfate–sulfide redox couple. During movement from recharge to discharge, sulfate is reduced by bacterial decomposition of organic matter in the clays, producing high sulfide and bicarbonate activities. In terms of Eh and pH, these waters fall within the stability fields of Fe2+ and FeS2.No pyrite was detected in the sediments, but in borehole samples and very fresh exposures of both clay and sand lithologies a very finely-disseminated black mineral phase, interpreted as iron monosulfides, was observed which is highly unstable in an aerobic environment, oxidizing rapidly to red-brown ferric hydroxide. The presence of these monosulfides, along with the aqueous geochemical data, indicate strongly reducing conditions in the clay strata, in which iron hydroxides are not a stable phase. Ferric hydroxides can therefore not be called upon as cementing agents; past studies which identified these ferric compounds as such cementing agents based their conclusions on samples out of equilibrium with their natural environment and are not directly relevant to the behaviour of the clay under natural conditions. The effects of these iron monosulfides and associated organic material on clay behaviour have not yet been studied.


2012 ◽  
Vol 170-173 ◽  
pp. 847-852
Author(s):  
Peng Ming Jiang ◽  
Zhong Lei Yan ◽  
Peng Li

As the complexity of unsaturated soil theory, and it must have a long test period when we study the unsaturated soils, so the conventional design analysis software does not provide such analysis, so we can imagine that such a slope stability analysis does not accurately reflect the actual state of the slope. Based on the known soil moisture content,this paper use the soil water characteristic curve and strength theory of unsaturated soil to calculate the strength reduction parameters of soil which can calculate the stability of the soil slope when using the common calculation method. It is noticeable that this method can be extended and applied if we establish regional databases for this simple method, and these databases can improve the accuracy of the calculation of slope stability.


2021 ◽  
Vol 16 (1) ◽  
pp. 92-101
Author(s):  
Guanghui Xia ◽  
Xinhua Li ◽  
Zhen Zhang ◽  
Yuhang Jiang

Abstract Polygonatum odoratum (Mill.) Druce (POD) is a natural plant widely used for food and medicine, thanks to its rich content of a strong antioxidant agent called homoisoflavones. However, food processing methods could affect the stability of POD flavones, resulting in changes to their antioxidant activity. This study attempts to evaluate the antioxidant activity of POD flavones subject to different processing methods and determines which method could preserve the antioxidant activity of POD flavones. Therefore, flavones were extracted from POD samples, which had been treated separately with one of the four processing methods: extrusion, baking, high-pressure treatment, and yeast fermentation. After that, the antioxidant activity of the flavones was subject to in vivo tests in zebrafish embryos. The results show that yeast fermentation had the least disruption to the antioxidant activity of POD flavones, making it the most suitable food processing method for POD. By contrast, extrusion and high-pressure treatment both slightly weakened the antioxidant activity of the flavones and should be avoided in food processing. The research results provide a reference for the development and utilization of POD and the protection of its biological activity.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3963
Author(s):  
Marius Holger Wetzel ◽  
Tina Trixy Rabending ◽  
Martin Friák ◽  
Monika Všianská ◽  
Mojmír Šob ◽  
...  

Although the general instability of the iron nitride γ′-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present study, samples of γ′-Fe4N and mixtures of α Fe and γ′-Fe4N powders have been heat-treated at temperatures between 250 and 1000 °C and pressures between 2 and 8 GPa in a multi-anvil press, in order to investigate phase equilibria involving the γ′ phase. Samples heat-treated at high-pressure conditions, were quenched, subsequently decompressed, and then analysed ex situ. Microstructure analysis is used to derive implications on the phase transformations during the heat treatments. Further, it is confirmed that the Fe–N phases in the target composition range are quenchable. Thus, phase proportions and chemical composition of the phases, determined from ex situ X-ray diffraction data, allowed conclusions about the phase equilibria at high-pressure conditions. Further, evidence for the low-temperature eutectoid decomposition γ′→α+ε′ is presented for the first time. From the observed equilibria, a P–T projection of the univariant equilibria in the Fe-rich portion of the Fe–N system is derived, which features a quadruple point at 5 GPa and 375 °C, above which γ′-Fe4N is thermodynamically unstable. The experimental work is supplemented by ab initio calculations in order to discuss the relative phase stability and energy landscape in the Fe–N system, from the ground state to conditions accessible in the multi-anvil experiments. It is concluded that γ′-Fe4N, which is unstable with respect to other phases at 0 K (at any pressure), has to be entropically stabilised in order to occur as stable phase system. In view of the frequently reported metastable retention of the γ′ phase during room temperature compression experiments, energetic and kinetic aspects of the polymorphic transition γ′⇌ε′ are discussed.


Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 91 ◽  
Author(s):  
Riccardo Gatto

In this article we introduce the stability analysis of a compound sum: it consists of computing the standardized variation of the survival function of the sum resulting from an infinitesimal perturbation of the common distribution of the summands. Stability analysis is complementary to the classical sensitivity analysis, which consists of computing the derivative of an important indicator of the model, with respect to a model parameter. We obtain a computational formula for this stability from the saddlepoint approximation. We apply the formula to the compound Poisson insurer loss with gamma individual claim amounts and to the compound geometric loss with Weibull individual claim amounts.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 607
Author(s):  
Raquel Chuliá-Jordán ◽  
David Santamaria-Perez ◽  
Javier Ruiz-Fuertes ◽  
Alberto Otero-de-la-Roza ◽  
Catalin Popescu

The structure of the naturally occurring, iron-rich mineral Ca1.08(6)Mg0.24(2)Fe0.64(4)Mn0.04(1)(CO3)2 ankerite was studied in a joint experimental and computational study. Synchrotron X-ray powder diffraction measurements up to 20 GPa were complemented by density functional theory calculations. The rhombohedral ankerite structure is stable under compression up to 12 GPa. A third-order Birch–Murnaghan equation of state yields V0 = 328.2(3) Å3, bulk modulus B0 = 89(4) GPa, and its first-pressure derivative B’0 = 5.3(8)—values which are in good agreement with those obtained in our calculations for an ideal CaFe(CO3)2 ankerite composition. At 12 GPa, the iron-rich ankerite structure undergoes a reversible phase transition that could be a consequence of increasingly non-hydrostatic conditions above 10 GPa. The high-pressure phase could not be characterized. DFT calculations were used to explore the relative stability of several potential high-pressure phases (dolomite-II-, dolomite-III- and dolomite-V-type structures), and suggest that the dolomite-V phase is the thermodynamically stable phase above 5 GPa. A novel high-pressure polymorph more stable than the dolomite-III-type phase for ideal CaFe(CO3)2 ankerite was also proposed. This high-pressure phase consists of Fe and Ca atoms in sevenfold and ninefold coordination, respectively, while carbonate groups remain in a trigonal planar configuration. This phase could be a candidate structure for dense carbonates in other compositional systems.


Magnesium ◽  
2005 ◽  
pp. 202-207
Author(s):  
J. Cizek ◽  
I. Prochazka ◽  
I. Stulikova ◽  
B. Smola ◽  
R. Kuzel ◽  
...  

Author(s):  
Wangzhi Zou ◽  
Xiao He ◽  
Wenchao Zhang ◽  
Zitian Niu ◽  
Xinqian Zheng

The stability considerations of centrifugal compressors become increasingly severe with the high pressure ratios, especially in aero-engines. Diffuser is the major subcomponent of centrifugal compressor, and its performance greatly influences the stability of compressor. This paper experimentally investigates the roles of vanes in diffuser on component instability and compression system instability. High pressure ratio centrifugal compressors with and without vanes in diffuser are tested and analyzed. Rig tests are carried out to obtain the compressor performance map. Dynamic pressure measurements and relevant Fourier analysis are performed to identify complex instability phenomena in the time domain and frequency domain, including rotating instability, stall, and surge. For component instability, vanes in diffuser are capable of suppressing the emergence of rotating stall in the diffuser at full speeds, but barely affect the characteristics of rotating instability in the impeller at low and middle speeds. For compression system instability, it is shown that the use of vanes in diffuser can effectively postpone the occurrence of compression system surge at full speeds. According to the experimental results and the one-dimensional flow theory, vanes in diffuser turn the diffuser pressure rise slope more negative and thus improve the stability of compressor stage, which means lower surge mass flow rate.


Sign in / Sign up

Export Citation Format

Share Document