scholarly journals BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes

2021 ◽  
Vol 118 (20) ◽  
pp. e2025846118
Author(s):  
Shane C. Wright ◽  
Viktoriya Lukasheva ◽  
Christian Le Gouill ◽  
Hiroyuki Kobayashi ◽  
Billy Breton ◽  
...  

G protein–coupled receptors (GPCRs) are gatekeepers of cellular homeostasis and the targets of a large proportion of drugs. In addition to their signaling activity at the plasma membrane, it has been proposed that their actions may result from translocation and activation of G proteins at endomembranes—namely endosomes. This could have a significant impact on our understanding of how signals from GPCR-targeting drugs are propagated within the cell. However, little is known about the mechanisms that drive G protein movement and activation in subcellular compartments. Using bioluminescence resonance energy transfer (BRET)–based effector membrane translocation assays, we dissected the mechanisms underlying endosomal Gq trafficking and activity following activation of Gq-coupled receptors, including the angiotensin II type 1, bradykinin B2, oxytocin, thromboxane A2 alpha isoform, and muscarinic acetylcholine M3 receptors. Our data reveal that GPCR-promoted activation of Gq at the plasma membrane induces its translocation to endosomes independently of β-arrestin engagement and receptor endocytosis. In contrast, Gq activity at endosomes was found to rely on both receptor endocytosis-dependent and -independent mechanisms. In addition to shedding light on the molecular processes controlling subcellular Gq signaling, our study provides a set of tools that will be generally applicable to the study of G protein translocation and activation at endosomes and other subcellular organelles, as well as the contribution of signal propagation to drug action.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Yoon Namkung ◽  
Christian Le Gouill ◽  
Viktoria Lukashova ◽  
Hiroyuki Kobayashi ◽  
Mireille Hogue ◽  
...  

Abstract Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes.


1989 ◽  
Vol 264 (1) ◽  
pp. 137-149 ◽  
Author(s):  
B D Beaumelle ◽  
C R Hopkins

A discontinuous-sucrose-gradient procedure for isolating endosomes from mouse lymphoma cells has been developed. After centrifugation, most organelles (especially mitochondria and lysosomes) are recovered in the denser fractions of the gradient, whereas a mixture of plasma membrane and endosomes is present at lighter densities. The endosome recovery in this fraction can be increased (by 100%) by (a) a mild trypsin treatment of the postnuclear supernatant and (b) loading the cell endosomes with a saturating concentration of low-density lipoproteins. Removal of the plasma-membrane contamination was achieved by preincubating the cells with a gold-ricin complex at 4 degrees C. On centrifugation, the gold-loaded membranes sediment to the bottom of the gradient. The endosome preparation isolated by these procedures is less than 6% contaminated by other organelles and contains 42% of internalized 125I-transferrin. We show that these isolated endosomes are functional, as displayed by their ability to fuse and to acidify in a cell-free system. Endosome fusion was studied by a new assay based on the use of fluorescence resonance energy transfer. This fusion is dependent on ATP and on a cytosolic, thermoresistant but trypsin- and N-ethylmaleimide-sensitive, protein factor. Early endosomes fuse more actively among themselves than with late-endocytic vesicles, and they fuse only slowly with plasma-membrane vesicles.


2009 ◽  
Vol 23 (5) ◽  
pp. 590-599 ◽  
Author(s):  
Jean-Pierre Vilardaga ◽  
Moritz Bünemann ◽  
Timothy N. Feinstein ◽  
Nevin Lambert ◽  
Viacheslav O. Nikolaev ◽  
...  

Abstract Many biochemical pathways are driven by G protein-coupled receptors, cell surface proteins that convert the binding of extracellular chemical, sensory, and mechanical stimuli into cellular signals. Their interaction with various ligands triggers receptor activation that typically couples to and activates heterotrimeric G proteins, which in turn control the propagation of secondary messenger molecules (e.g. cAMP) involved in critically important physiological processes (e.g. heart beat). Successful transfer of information from ligand binding events to intracellular signaling cascades involves a dynamic interplay between ligands, receptors, and G proteins. The development of Förster resonance energy transfer and bioluminescence resonance energy transfer-based methods has now permitted the kinetic analysis of initial steps involved in G protein-coupled receptor-mediated signaling in live cells and in systems as diverse as neurotransmitter and hormone signaling. The direct measurement of ligand efficacy at the level of the receptor by Förster resonance energy transfer is also now possible and allows intrinsic efficacies of clinical drugs to be linked with the effect of receptor polymorphisms.


2020 ◽  
Vol 295 (15) ◽  
pp. 5124-5135 ◽  
Author(s):  
Michelle E. Boursier ◽  
Sergiy Levin ◽  
Kris Zimmerman ◽  
Thomas Machleidt ◽  
Robin Hurst ◽  
...  

G protein–coupled receptors (GPCRs) are prominent targets to new therapeutics for a range of diseases. Comprehensive assessments of their cellular interactions with bioactive compounds, particularly in a kinetic format, are imperative to the development of drugs with improved efficacy. Hence, we developed complementary cellular assays that enable equilibrium and real-time analyses of GPCR ligand engagement and consequent activation, measured as receptor internalization. These assays utilize GPCRs genetically fused to an N-terminal HiBiT peptide (1.3 kDa), which produces bright luminescence upon high-affinity complementation with LgBiT, an 18-kDa subunit derived from NanoLuc. The cell impermeability of LgBiT limits signal detection to the cell surface and enables measurements of ligand-induced internalization through changes in cell-surface receptor density. In addition, bioluminescent resonance energy transfer is used to quantify dynamic interactions between ligands and their cognate HiBiT-tagged GPCRs through competitive binding with fluorescent tracers. The sensitivity and dynamic range of these assays benefit from the specificity of bioluminescent resonance energy transfer and the high signal intensity of HiBiT/LgBiT without background luminescence from receptors present in intracellular compartments. These features allow analyses of challenging interactions having low selectivity or affinity and enable studies using endogenously tagged receptors. Using the β-adrenergic receptor family as a model, we demonstrate the versatility of these assays by utilizing the same HiBiT construct in analyses of multiple aspects of GPCR pharmacology. We anticipate that this combination of target engagement and proximal functional readout will prove useful to the study of other GPCR families and the development of new therapeutics.


2019 ◽  
Vol 20 (15) ◽  
pp. 3724 ◽  
Author(s):  
Tamara A. M. Mocking ◽  
Maurice C. M. L. Buzink ◽  
Rob Leurs ◽  
Henry F. Vischer

Duration of receptor antagonism, measured as the recovery of agonist responsiveness, is gaining attention as a method to evaluate the ‘effective’ target-residence for antagonists. These functional assays might be a good alternative for kinetic binding assays in competition with radiolabeled or fluorescent ligands, as they are performed on intact cells and better reflect consequences of dynamic cellular processes on duration of receptor antagonism. Here, we used a bioluminescence resonance energy transfer (BRET)-based assay that monitors heterotrimeric G protein activation via scavenging of released Venus-Gβ1γ2 by NanoLuc (Nluc)-tagged membrane-associated-C-terminal fragment of G protein-coupled receptor kinase 3 (masGRK3ct-Nluc) as a tool to probe duration of G protein-coupled receptor (GPCR) antagonism. The Gαi-coupled histamine H3 receptor (H3R) was used in this study as prolonged antagonism is associated with adverse events (e.g., insomnia) and consequently, short-residence time ligands might be preferred. Due to its fast and prolonged response, this assay can be used to determine the duration of functional antagonism by measuring the recovery of agonist responsiveness upon washout of pre-bound antagonist, and to assess antagonist re-equilibration time via Schild-plot analysis. Re-equilibration of pre-incubated antagonist with agonist and receptor could be followed in time to monitor the transition from insurmountable to surmountable antagonism. The BRET-based G protein activation assay can detect differences in the recovery of H3R responsiveness and re-equilibration of pre-bound antagonists between the tested H3R antagonists. Fast dissociation kinetics were observed for marketed drug pitolisant (Wakix®) in this assay, which suggests that short residence time might be beneficial for therapeutic targeting of the H3R.


2020 ◽  
Vol 117 (25) ◽  
pp. 14522-14531
Author(s):  
Allison Anderson ◽  
Ikuo Masuho ◽  
Ezequiel Marron Fernandez de Velasco ◽  
Atsushi Nakano ◽  
Lutz Birnbaumer ◽  
...  

How G protein-coupled receptors (GPCRs) evoke specific biological outcomes while utilizing a limited array of G proteins and effectors is poorly understood, particularly in native cell systems. Here, we examined signaling evoked by muscarinic (M2R) and adenosine (A1R) receptor activation in the mouse sinoatrial node (SAN), the cardiac pacemaker. M2R and A1R activate a shared pool of cardiac G protein-gated inwardly rectifying K+(GIRK) channels in SAN cells from adult mice, but A1R-GIRK responses are smaller and slower than M2R-GIRK responses. Recordings from mice lacking Regulator of G protein Signaling 6 (RGS6) revealed that RGS6 exerts a GPCR-dependent influence on GIRK-dependent signaling in SAN cells, suppressing M2R-GIRK coupling efficiency and kinetics and A1R-GIRK signaling amplitude. Fast kinetic bioluminescence resonance energy transfer assays in transfected HEK cells showed that RGS6 prefers Gαoover Gαias a substrate for its catalytic activity and that M2R signals preferentially via Gαo, while A1R does not discriminate between inhibitory G protein isoforms. The impact of atrial/SAN-selective ablation of Gαoor Gαi2was consistent with these findings. Gαi2ablation had minimal impact on M2R-GIRK and A1R-GIRK signaling in SAN cells. In contrast, Gαoablation decreased the amplitude and slowed the kinetics of M2R-GIRK responses, while enhancing the sensitivity and prolonging the deactivation rate of A1R-GIRK signaling. Collectively, our data show that differences in GPCR-G protein coupling preferences, and the Gαosubstrate preference of RGS6, shape A1R- and M2R-GIRK signaling dynamics in mouse SAN cells.


1997 ◽  
Vol 30 (1) ◽  
pp. 67-106 ◽  
Author(s):  
S. DAMJANOVICH ◽  
R. GÁSPÁR, Jr. ◽  
C. PIERI

1. INTRODUCTION 681.1 Receptor patterns in the plasma membrane 681.2 Different types of receptor patterns 712. METHODS TO INVESTIGATE NON-RANDOM RECEPTOR CLUSTERING 732.1 Fluorescence resonance energy transfer 732.2 Flow cytometric energy transfer measurement 782.3 Fluorescence anisotropy and energy transfer 792.4 Photobleaching energy transfer on single cells 812.5 Two-dimensional mapping of receptor superstructures 822.6 Detecting single receptor molecules 852.7 Chemical identification of receptor clusters 862.8 Electron microscopy 872.9 Scanning force microscopy 883. CONFORMATIONAL STATES OF RECEPTORS 903.1 Multi-subunit receptor structures 903.2 Physical parameters influencing conformational states 913.3 Chemical interactions and receptor conformations 924. ON THE ORIGIN OF NATURALLY OCCURRING RECEPTOR CLUSTERS 934.1 Synthesis of receptors and their localization in the plasma membrane 934.2 Lipid domain structure of the plasma membrane 944.3 The validity of the Singer–Nicolson model 945. CONCLUSIONS 966. ACKNOWLEDGEMENTS 967. REFERENCES 97


Sign in / Sign up

Export Citation Format

Share Document