scholarly journals The magnitude of germinal center reactions is restricted by a fixed number of preexisting niches

2021 ◽  
Vol 118 (30) ◽  
pp. e2100576118
Author(s):  
Patricia Avancena ◽  
Tengfei Song ◽  
Yonghong Yao ◽  
Hannah Fehlner-Peach ◽  
Betty Diamond ◽  
...  

Antibody affinity maturation occurs in the germinal center (GC), a highly dynamic structure that arises upon antigen stimulation and recedes after infection is resolved. While the magnitude of the GC reaction is highly fluctuating and depends on antigens or pathological conditions, it is unclear whether GCs are assembled ad hoc in different locations or in preexisting niches within B cell follicles. We show that follicular dendritic cells (FDCs), the essential cellular components of the GC architecture, form a predetermined number of clusters. The total number of FDC clusters is the same on several different genetic backgrounds and is not altered by immunization or inflammatory conditions. In unimmunized and germ-free mice, a few FDC clusters contain GC B cells; in contrast, immunization or autoimmune milieu significantly increases the frequency of FDC clusters occupied by GC B cells. Excessive occupancy of GC niches by GC B cells after repeated immunizations or in autoimmune conditions suppresses subsequent antibody responses to new antigens. These data indicate that the magnitude of the GC reaction is restricted by a fixed number of permissive GC niches containing preassembled FDC clusters. This finding may help in the future design of vaccination strategies and in the modulation of antibody-mediated autoimmunity.

2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Xin Li ◽  
Liying Gong ◽  
Alexandre P. Meli ◽  
Danielle Karo-Atar ◽  
Weili Sun ◽  
...  

Antigen uptake and presentation by naive and germinal center (GC) B cells are different, with the former expressing even low-affinity BCRs efficiently capture and present sufficient antigen to T cells, whereas the latter do so more efficiently after acquiring high-affinity BCRs. We show here that antigen uptake and processing by naive but not GC B cells depend on Cbl and Cbl-b (Cbls), which consequently control naive B and cognate T follicular helper (Tfh) cell interaction and initiation of the GC reaction. Cbls mediate CD79A and CD79B ubiquitination, which is required for BCR-mediated antigen endocytosis and postendocytic sorting to lysosomes, respectively. Blockade of CD79A or CD79B ubiquitination or Cbls ligase activity is sufficient to impede BCR-mediated antigen processing and GC development. Thus, Cbls act at the entry checkpoint of the GC reaction by promoting naive B cell antigen presentation. This regulation may facilitate recruitment of naive B cells with a low-affinity BCR into GCs to initiate the process of affinity maturation.


Author(s):  
Yanan Li ◽  
Anshuman Bhanja ◽  
Arpita Upadhyaya ◽  
Xiaodong Zhao ◽  
Wenxia Song

B-cells undergo somatic hypermutation and affinity maturation in germinal centers. Somatic hypermutated germinal center B-cells (GCBs) compete to engage with and capture antigens on follicular dendritic cells. Recent studies show that when encountering membrane antigens, GCBs generate actin-rich pod-like structures with B-cell receptor (BCR) microclusters to facilitate affinity discrimination. While deficiencies in actin regulators, including the Wiskott-Aldrich syndrome protein (WASp), cause B-cell affinity maturation defects, the mechanism by which actin regulates BCR signaling in GBCs is not fully understood. Using WASp knockout (WKO) mice that express Lifeact-GFP and live-cell total internal reflection fluorescence imaging, this study examined the role of WASp-mediated branched actin polymerization in the GCB immunological synapse. After rapid spreading on antigen-coated planar lipid bilayers, GCBs formed microclusters of phosphorylated BCRs and proximal signaling molecules at the center and the outer edge of the contact zone. The centralized signaling clusters localized at actin-rich GCB membrane protrusions. WKO reduced the centralized micro-signaling clusters by decreasing the number and stability of F-actin foci supporting GCB membrane protrusions. The actin structures that support the spreading membrane also appeared less frequently and regularly in WKO than in WT GCBs, which led to reductions in both the level and rate of GCB spreading and antigen gathering. Our results reveal essential roles for WASp in the generation and maintenance of unique structures for GCB immunological synapses.


2020 ◽  
Author(s):  
Juhee Pae ◽  
Jonatan Ersching ◽  
Tiago B. R. Castro ◽  
Marta Schips ◽  
Luka Mesin ◽  
...  

AbstractDuring affinity maturation, germinal center (GC) B cells alternate between proliferation and so-matic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively-selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma-associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, to clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


2018 ◽  
Vol 215 (6) ◽  
pp. 1571-1588 ◽  
Author(s):  
Norbert Pardi ◽  
Michael J. Hogan ◽  
Martin S. Naradikian ◽  
Kaela Parkhouse ◽  
Derek W. Cain ◽  
...  

T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.


2020 ◽  
Vol 218 (4) ◽  
Author(s):  
Juhee Pae ◽  
Jonatan Ersching ◽  
Tiago B.R. Castro ◽  
Marta Schips ◽  
Luka Mesin ◽  
...  

During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma–associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


Cell Reports ◽  
2019 ◽  
Vol 29 (8) ◽  
pp. 2257-2269.e6 ◽  
Author(s):  
Ann Ly ◽  
Yang Liao ◽  
Halina Pietrzak ◽  
Lisa J. Ioannidis ◽  
Tom Sidwell ◽  
...  

2018 ◽  
Vol 3 (29) ◽  
pp. eaau6598 ◽  
Author(s):  
Kihyuck Kwak ◽  
Nicolas Quizon ◽  
Haewon Sohn ◽  
Avva Saniee ◽  
Javier Manzella-Lapeira ◽  
...  

Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with naïve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity– and Tfh cell–dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic, actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens, whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of naïve B cells. Thus, intrinsic properties of human GC B cells set thresholds for affinity selection.


Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2386-2391
Author(s):  
Haopeng Yang ◽  
Michael R. Green

Abstract Affinity maturation and terminal differentiation of B cells via the germinal center reaction is a complex multistep process controlled by transcription factors that induce or suppress large dynamic transcriptional programs. This occurs via the recruitment of coactivator or corepressor complexes that epigenetically regulate gene expression by post-translationally modifying histones and/or remodeling chromatin structure. B-cell–intrinsic developmental programs both regulate and respond to interactions with other cells in the germinal center that provide survival and differentiation signals, such as T-follicular helper cells and follicular dendritic cells. Epigenetic and transcriptional programs that naturally occur during B-cell development are hijacked in B-cell lymphoma by genetic alterations that directly or indirectly change the function of transcription factors and/or chromatin-modifying genes. These in turn skew differentiation toward the tumor cell of origin and alter interactions between lymphoma B cells and other cells within the microenvironment. Understanding the mechanisms by which genetic alterations perturb epigenetic and transcriptional programs regulating B-cell development and immune interactions may identify opportunities to target these programs using epigenetic-modifying agents. Here, we discuss recently published studies centered on follicular lymphoma and diffuse large B-cell lymphoma within the context of prior knowledge, and we highlight how these insights have informed potential avenues for rational therapeutic interventions.


2019 ◽  
Vol 116 (37) ◽  
pp. 18550-18560 ◽  
Author(s):  
Wenqian Zhang ◽  
Huihui Zhang ◽  
Shujun Liu ◽  
Fucan Xia ◽  
Zijian Kang ◽  
...  

Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response―a process critical for antibody affinity maturation―is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ABCs and deregulated TFHcell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ABC differentiation, and blocking CD11c+Tbet+ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFHcell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.


Sign in / Sign up

Export Citation Format

Share Document