scholarly journals Altered effective connectivity in sensorimotor cortices is a signature of severity and clinical course in depression

2021 ◽  
Vol 118 (40) ◽  
pp. e2105730118
Author(s):  
Dipanjan Ray ◽  
Dmitry Bezmaternykh ◽  
Mikhail Mel’nikov ◽  
Karl J. Friston ◽  
Moumita Das

Functional neuroimaging research on depression has traditionally targeted neural networks associated with the psychological aspects of depression. In this study, instead, we focus on alterations of sensorimotor function in depression. We used resting-state functional MRI data and dynamic causal modeling (DCM) to assess the hypothesis that depression is associated with aberrant effective connectivity within and between key regions in the sensorimotor hierarchy. Using hierarchical modeling of between-subject effects in DCM with parametric empirical Bayes we first established the architecture of effective connectivity in sensorimotor cortices. We found that in (interoceptive and exteroceptive) sensory cortices across participants, the backward connections are predominantly inhibitory, whereas the forward connections are mainly excitatory in nature. In motor cortices these parities were reversed. With increasing depression severity, these patterns are depreciated in exteroceptive and motor cortices and augmented in the interoceptive cortex, an observation that speaks to depressive symptomatology. We established the robustness of these results in a leave-one-out cross-validation analysis and by reproducing the main results in a follow-up dataset. Interestingly, with (nonpharmacological) treatment, depression-associated changes in backward and forward effective connectivity partially reverted to group mean levels. Overall, altered effective connectivity in sensorimotor cortices emerges as a promising and quantifiable candidate marker of depression severity and treatment response.

2021 ◽  
Author(s):  
Dipanjan Ray ◽  
Dmitry Bezmaternykh ◽  
Mikhail Mel’nikov ◽  
Karl J Friston ◽  
Moumita Das

AbstractFunctional neuroimaging research on depression has traditionally targeted neural networks associated with the psychological aspects of depression. In this study, in stead, we focus on alterations of sensorimotor function in depression. We used resting-state functional MRI data and Dynamic Causal Modeling (DCM) to assess the hypothesis that depression is associated with aberrant effective connectivity within and between key regions in the sensorimotor hierarchy. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes we first established the architecture of effective connectivity in sensorimotor cortices. We found that in (interoceptive and exteroceptive) sensory cortices across participants, the backward connections are predominantly inhibitory whereas the forward connections are mainly excitatory in nature. In the motor cortices these parities were reversed. With increasing depression severity, these patterns are depreciated in exteroceptive and motor cortices and augmented in interoceptive cortex: an observation that speaks to depressive symptomatology. We established the robustness of these results in a leave-one-out cross validation analysis and by reproducing the main results in a follow-up dataset. Interestingly, with (non-pharmacological) treatment, depression associated changes in backward and forward effective connectivity partially reverted to group mean levels. Overall, altered effective connectivity in sensorimotor cortices emerges as a promising and quantifiable candidate marker of depression severity and treatment response.


2021 ◽  
Author(s):  
Ismail Bouziane ◽  
Moumita Das ◽  
Cesar Caballero-Gaudes ◽  
Dipanjan Ray

AbstractBackgroundFunctional neuroimaging research on anxiety has traditionally focused on brain networks associated with the complex psychological aspects of anxiety. In this study, instead, we target the somatic aspects of anxiety. Motivated by the growing recognition that top-down cortical processing plays crucial roles in perception and action, we investigate effective connectivity among hierarchically organized sensorimotor regions and its association with (trait) anxiety.MethodsWe selected 164 participants from the Human Connectome Project based on psychometric measures. We used their resting-state functional MRI data and Dynamic Causal Modeling (DCM) to assess effective connectivity within and between key regions in the exteroceptive, interoceptive, and motor hierarchy. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes we first established the architecture of effective connectivity in sensorimotor networks and investigated its association with fear somatic arousal (FSA) and fear affect (FA) scores. To probe the robustness of our results, we implemented a leave-one-out cross validation analysis.ResultsAt the group level, the top-down connections in exteroceptive cortices were inhibitory in nature whereas in interoceptive and motor cortices they were excitatory. With increasing FSA scores, the pattern of top-down effective connectivity was enhanced in all three networks: an observation that corroborates well with anxiety phenomenology. Anxiety associated changes in effective connectivity were of effect size sufficiently large to predict whether somebody has mild or severe somatic anxiety. Interestingly, the enhancement in top-down processing in sensorimotor cortices were associated with FSA but not FA scores, thus establishing the (relative) dissociation between somatic and cognitive dimensions of anxiety.ConclusionsOverall, enhanced top-down effective connectivity in sensorimotor cortices emerges as a promising and quantifiable candidate marker of trait somatic anxiety. These results pave the way for a novel approach into investigating the neural underpinnings of anxiety based on the recognition of anxiety as an embodied phenomenon and the emerging interest in top-down cortical processing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jing Zhang ◽  
Zixiao Li ◽  
Xingxing Cao ◽  
Lijun Zuo ◽  
Wei Wen ◽  
...  

We investigated the association between poststroke cognitive impairment and a specific effective network connectivity in the prefrontal–basal ganglia circuit. The resting-state effective connectivity of this circuit was modeled by employing spectral dynamic causal modeling in 11 poststroke patients with cognitive impairment (PSCI), 8 poststroke patients without cognitive impairment (non-PSCI) at baseline and 3-month follow-up, and 28 healthy controls. Our results showed that different neuronal models of effective connectivity in the prefrontal–basal ganglia circuit were observed among healthy controls, non-PSCI, and PSCI patients. Additional connected paths (extra paths) appeared in the neuronal models of stroke patients compared with healthy controls. Moreover, changes were detected in the extra paths of non-PSCI between baseline and 3-month follow-up poststroke, indicating reorganization in the ipsilesional hemisphere and suggesting potential compensatory changes in the contralesional hemisphere. Furthermore, the connectivity strengths of the extra paths from the contralesional ventral anterior nucleus of thalamus to caudate correlated significantly with cognitive scores in non-PSCI and PSCI patients. These suggest that the neuronal model of effective connectivity of the prefrontal–basal ganglia circuit may be sensitive to stroke-induced cognitive decline, and it could be a biomarker for poststroke cognitive impairment 3 months poststroke. Importantly, contralesional brain regions may play an important role in functional compensation of cognitive decline.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hae-Jeong Park ◽  
Jinseok Eo ◽  
Chongwon Pae ◽  
Junho Son ◽  
Sung Min Park ◽  
...  

The human brain at rest exhibits intrinsic dynamics transitioning among the multiple metastable states of the inter-regional functional connectivity. Accordingly, the demand for exploring the state-specific functional connectivity increases for a deeper understanding of mental diseases. Functional connectivity, however, lacks information about the directed causal influences among the brain regions, called effective connectivity. This study presents the dynamic causal modeling (DCM) framework to explore the state-dependent effective connectivity using spectral DCM for the resting-state functional MRI (rsfMRI). We established the sequence of brain states using the hidden Markov model with the multivariate autoregressive coefficients of rsfMRI, summarizing the functional connectivity. We decomposed the state-dependent effective connectivity using a parametric empirical Bayes scheme that models the effective connectivity of consecutive windows with the time course of the discrete states as regressors. We showed the plausibility of the state-dependent effective connectivity analysis in a simulation setting. To test the clinical applicability, we applied the proposed method to characterize the state- and subtype-dependent effective connectivity of the default mode network in children with combined-type attention deficit hyperactivity disorder (ADHD-C) compared with age-matched, typically developed children (TDC). All 88 children were subtyped according to the occupation times (i.e., dwell times) of the three dominant functional connectivity states, independently of clinical diagnosis. The state-dependent effective connectivity differences between ADHD-C and TDC according to the subtypes and those between the subtypes of ADHD-C were expressed mainly in self-inhibition, magnifying the importance of excitation inhibition balance in the subtyping. These findings provide a clear motivation for decomposing the state-dependent dynamic effective connectivity and state-dependent analysis of the directed coupling in exploring mental diseases.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S5-S5
Author(s):  
Victoria Okuneye ◽  
Brett Clementz ◽  
Elliot Gershon ◽  
Matcheri Keshavan ◽  
Jennifer E McDowell ◽  
...  

Abstract Background Delusions, false beliefs held in the face of disconfirming evidence, are a prevalent and highly distressing feature of psychotic disorders. The neurobiology of delusions remains unknown but recent evidence suggests a role for abnormal prediction error neural signaling. Prediction error is neurocognitive process in which the brain signals the need to update beliefs when presented with information that disconfirms expectations. Task based neuroimaging studies have identified delusional beliefs correlate with altered activation in frontal and subcortical brain regions during prediction error, though such work is limited in scope. In a large sample of transdiagnostic psychotic patients we modeled the resting state effective connectivity of the delusion-associated predication error (D-PE) circuit. Methods Resting state fMRI was obtained from 289 psychotic subjects (schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features) and 219 healthy controls, recruited as part of the multisite Bipolar & Schizophrenia Network on Intermediate Phenotypes (BSNIP1) study. Neuroimaging data were processed using CONN software with strict quality control criteria. Five D-PE regions of interest (ROIs) were created based on peak coordinates from published task-based prediction error fMRI studies: right Dorsolateral Prefrontal Cortex [r DLPFC], r Ventrolateral Prefrontal Cortex [r VLPFC], r Caudate, l Caudate and l Midbrain. In each subject the first eigenvariate was extracted from the rs-fMRI timeseries of each D-PE ROI. Spectral Dynamic Causal Modeling (spDCM) was performed on a fully connected model of the 5 ROIs. Parameters for the full model were fit using Parameter Empirical Bayes (PEB) and then passed to the group level where they were reduced using Bayesian Model Averaging (BMA). The association of effective connectivity with current delusional severity was tested using PEB-BMA controlling for antipsychotic medication, sex, age and scanner site. Significant effective connectivity was identified as parameters with free energy evidence greater than 95% probability. Additionally, we assessed the effective connectivity differences of this circuit between psychotic probands and healthy controls. Results Greater delusional severity was significantly associated with inhibition of the r Caudate by the r VLPFC, excitation of the r DLPFC by the l Caudate, and decreased self-inhibition of the r VLPFC and r DLPFC. Effective connectivity of the D-PE network in psychotic probands compared to healthy controls was associated with inhibition of the r Caudate by the r VLPFC, the r DLPFC by the l Midbrain, the l Midbrain by the r Caudate, and decreased self-inhibition of the r Caudate, r VLPFC, and r DLPFC. Discussion We found that resting state effective connectivity of the prediction error circuit is disrupted in psychotic subjects experiencing delusions. Specifically, delusion severity was associated with both increased bottom-up and decreased top-down frontostriatal connectivity along with greater disinhibition of the r VLPFC and r DLPFC. These effective connectivity results provide novel insight into the causal paths which may underlie delusion neural circuitry. This provides further evidence that dysconnectivity of prediction error system is a biomarker of delusions in psychosis. Furthermore, these transdiagnostic results implicate frontostriatal dysconnectivity as common neuropathology in delusions.


2013 ◽  
Vol 15 (3) ◽  
pp. 279-289 ◽  

We review critical trends in imaging genetics as applied to schizophrenia research, and then discuss some future directions of the field. A plethora of imaging genetics studies have investigated the impact of genetic variation on brain function, since the paradigm of a neuroimaging intermediate phenotype for schizophrenia first emerged. It was initially posited that the effects of schizophrenia susceptibility genes would be more penetrant at the level of biologically based neuroimaging intermediate phenotypes than at the level of a complex and phenotypically heterogeneous psychiatric syndrome. The results of many studies support this assumption, most of which show single genetic variants to be associated with changes in activity of localized brain regions, as determined by select cognitive controlled tasks. From these basic studies, functional neuroimaging analysis of intermediate phenotypes has progressed to more complex and realistic models of brain dysfunction, incorporating models of functional and effective connectivity, including the modalities of psycho-physiological interaction, dynamic causal modeling, and graph theory metrics. The genetic association approaches applied to imaging genetics have also progressed to more sophisticated multivariate effects, including incorporation of two-way and three-way epistatic interactions, and most recently polygenic risk models. Imaging genetics is a unique and powerful strategy for understanding the neural mechanisms of genetic risk for complex CNS disorders at the human brain level.


2021 ◽  
Vol 15 ◽  
Author(s):  
Andrew D. Snyder ◽  
Liangsuo Ma ◽  
Joel L. Steinberg ◽  
Kyle Woisard ◽  
Frederick G. Moeller

Dynamic causal modeling (DCM) is a method for analyzing functional magnetic resonance imaging (fMRI) and other functional neuroimaging data that provides information about directionality of connectivity between brain regions. A review of the neuropsychiatric fMRI DCM literature suggests that there may be a historical trend to under-report self-connectivity (within brain regions) compared to between brain region connectivity findings. These findings are an integral part of the neurologic model represented by DCM and serve an important neurobiological function in regulating excitatory and inhibitory activity between regions. We reviewed the literature on the topic as well as the past 13 years of available neuropsychiatric DCM literature to find an increasing (but still, perhaps, and inadequate) trend in reporting these results. The focus of this review is fMRI as the majority of published DCM studies utilized fMRI and the interpretation of the self-connectivity findings may vary across imaging methodologies. About 25% of articles published between 2007 and 2019 made any mention of self-connectivity findings. We recommend increased attention toward the inclusion and interpretation of self-connectivity findings in DCM analyses in the neuropsychiatric literature, particularly in forthcoming effective connectivity studies of substance use disorders.


2020 ◽  
Author(s):  
Wan-Jun Guo ◽  
Xia Yang ◽  
Yu-Jie Tao ◽  
Ya-Jing Meng ◽  
Hui-Yao Wang ◽  
...  

BACKGROUND Evidence indicates that Internet addiction (IA) is associated with depression, but longitudinal studies have rarely been reported, and no studies have yet investigated potential common vulnerability or a possible specific causal relationship between these disorders. OBJECTIVE To overcome these gaps, the present 12-month longitudinal study based on a large-sample employed a cross-lagged panel model (CLPM) approach to investigate the potential common vulnerability and specific cross-causal relationships between IA and CSD (or depression). METHODS IA and clinically-significant depression (CSD) among 12 043 undergraduates were surveyed at baseline (as freshmen) and in follow-up after 12 months (as sophomores). Application of CLPM revealed two well-fitted design between IA and CSD, and between severities of IA and depression, adjusting for demographics. RESULTS Rates of baseline IA and CSD were 5.47% and 3.85%, respectively; increasing to 9.47% and 5.58%, respectively at follow-up. Among those with baseline IA and CSD, 44.61% and 34.48% remained stable at the time of the follow-up survey, respectively. Rates of new-incidences of IA and CSD over 12 months were 7.43% and 4.47%, respectively. Application of a cross-lagged panel model approach (CLPM, a discrete time structural equation model used primarily to assess causal relationships in real-world settings) revealed two well-fitted design between IA and CSD, and between severities of IA and depression, adjusting for demographics. Models revealed that baseline CSD (or depression severity) had a significant net-predictive effect on follow-up IA (or IA severity), and baseline IA (or IA severity) had a significant net-predictive effect on follow-up CSD (or depression severity). CONCLUSIONS These correlational patterns using a CLPM indicate that both common vulnerability and bidirectional specific cross-causal effects between them may contribute to the association between IA and depression. As the path coefficients of the net-cross-predictive effects were significantly smaller than those of baseline to follow-up cross-section associations, vulnerability may play a more significant role than bidirectional-causal effects. CLINICALTRIAL Ethics Committee of West China Hospital, Sichuan University (NO. 2016-171)


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon Sanwald ◽  
◽  
Katharina Widenhorn-Müller ◽  
Carlos Schönfeldt-Lecuona ◽  
Christian Montag ◽  
...  

Abstract Background An early onset of depression is associated with higher chronicity and disability, more stressful life events (SLEs), higher negative emotionality as described by the primary emotion SADNESS and more severe depressive symptomatology compared to depression onset later in life. Additionally, methylation of the serotonin transporter gene (SLC6A4) is associated with SLEs and depressive symptoms. Methods We investigated the relation of SLEs, SLC6A4 methylation in peripheral blood, the primary emotions SADNESS and SEEKING (measured by the Affective Neuroscience Personality Scales) as well as depressive symptom severity to age at depression onset in a sample of N = 146 inpatients suffering from major depression. Results Depressed women showed higher SADNESS (t (91.05) = − 3.17, p = 0.028, d = − 0.57) and higher SLC6A4 methylation (t (88.79) = − 2.95, p = 0.02, d = − 0.55) compared to men. There were associations between SLEs, primary emotions and depression severity, which partly differed between women and men. The Akaike information criterion (AIC) indicated the selection of a model including sex, SLEs, SEEKING and SADNESS for the prediction of age at depression onset. SLC6A4 methylation was not related to depression severity, age at depression onset or SLEs in the entire group, but positively related to depression severity in women. Conclusions Taken together, we provide further evidence that age at depression onset is associated with SLEs, personality and depression severity. However, we found no associations between age at onset and SLC6A4 methylation. The joint investigation of variables originating in biology, psychology and psychiatry could make an important contribution to understanding the development of depressive disorders by elucidating potential subtypes of depression.


1988 ◽  
Vol 3 (3) ◽  
pp. 181-188 ◽  
Author(s):  
O.M. Lesch ◽  
H. Walter ◽  
R. Mader ◽  
M. Musalek ◽  
K. Zeiler

SummaryRushing (1968) offers two hypotheses for the possible structural connection between suicidal and chronic alcoholic case groups : the “processual cause theory” is based on the idea that alcoholism leads through its problematic nature to suicide attempts. In the “common cause theory” alcoholism and suicidai acts are due to mutually shared factors, e.g., social isolation and enforced social integration.Data on suicide and suicide attempts were obtained as a separate aspect of a comprehensive follow-up investigation. All patients from one particular region in Austria, who had been admitted to hospital between 1976 and 1978 for treatment of chronic alcoholism took part in this study. Follow-up time was 4 to 7 years. 101 patients died during this period. 356 patients remained under close follow-up investigation. In addition to information about basic drinking habits, we attempted to identify predictive factors regarding the course of alcoholism and investigated familial circumstances, development and interactions.In contradiction with both theories forwarded by Rushing, we were able to isolate a special subgroup of chronic alcoholics attempting or committing suicide. This group is characterized by a depressive symptomatology (endogeneous-depressive syndrome, according to the Viennese Diagnostic Criteria), as well as by the presence of other psychiatrie disturbances underlying chronic alcohol abuse. Family histories also uncovered evidence of psychiatric illnesses. Cases of negative alteration in social status and problematical partnerships could be found in this subgroup. Drinking habits themselves did not differ from non suicide-prone alcoholics.


Sign in / Sign up

Export Citation Format

Share Document