Topological barriers to defect nucleation generate large mechanical forces in an ordered fluid

2021 ◽  
Vol 118 (44) ◽  
pp. e2110503118
Author(s):  
Bruno Zappone ◽  
Roberto Bartolino

Common fluids cannot sustain static mechanical stresses at the macroscopic scale because they lack molecular order. Conversely, crystalline solids exhibit long-range order and mechanical strength at the macroscopic scale. Combining the properties of fluids and solids, liquid crystal films respond to mechanical confinement by both flowing and generating static forces. The elastic response, however, is very weak for film thicknesses exceeding 10 nm. In this study, the mechanical strength of a fluid film was enhanced by introducing topological defects in a cholesteric liquid crystal, producing unique viscoelastic and optomechanical properties. The cholesteric was confined under strong planar anchoring conditions between two curved surfaces with sphere–sphere contact geometry similar to that of large colloidal particles, creating concentric dislocation loops. During surface retraction, the loops shrank and periodically disappeared at the surface contact point, where the cholesteric helix underwent discontinuous twist transitions, producing weak oscillatory surface forces. On the other hand, new loop nucleation was frustrated by a topological barrier during fluid compression, creating a metastable state. This generated exceptionally large forces with a range exceeding 100 nm as well as extended blueshifts of the photonic bandgap. The metastable cholesteric helix eventually collapsed under a high compressive load, triggering a stick-slip–like cascade of defect nucleation and twist reconstruction events. These findings were explained using a simple theoretical model and suggest a general approach to enhance the mechanical strength of one-dimensional periodic materials, particularly cholesteric colloid mixtures.

2018 ◽  
Vol 115 (17) ◽  
pp. 4334-4339 ◽  
Author(s):  
Piotr Sleczkowski ◽  
Ye Zhou ◽  
Supitchaya Iamsaard ◽  
Juan J. de Pablo ◽  
Nathalie Katsonis ◽  
...  

Cholesteric liquid crystal (CLC) droplets exhibit nontrivial topological features, which are controlled by the ratio between the cholesteric pitch and the droplet radius. The radial spherical structure (RSS) is of particular interest, as it reveals an onion-like concentric organization of the cholesteric helices, leading to the expression of spherical Bragg microcavities. Using an overcrowded alkene-based unidirectional molecular motor as a dopant, we show that the topological defect structure in the droplet can be activated by illumination. By using appropriate molecular motor concentrations, light can either break the symmetry of topological defects (as observed for the bent-twisted bipolar structure), or it can induce inversion of handedness in an onion-like organization (in the case of RSS). This latter feature may pave the way toward alternative activation modes of lasers based on cholesteric droplets. By also studying CLC droplets once they have reached full photoconversion at photostationary state (PSS), we highlight that the strong influence of confinement on the droplets structure occurs to the same extent after the helix inversion event. Our results are interpreted in terms of numerical simulations of the droplets’ structure, which shed light on the major role played by curvature close to the droplets’ center, this latter one becoming dominant when the droplet radius is small.


2017 ◽  
Vol 114 (9) ◽  
pp. 2137-2142 ◽  
Author(s):  
Yunfeng Li ◽  
Elisabeth Prince ◽  
Sangho Cho ◽  
Alinaghi Salari ◽  
Youssef Mosaddeghian Golestani ◽  
...  

An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.


Soft Matter ◽  
2016 ◽  
Vol 12 (46) ◽  
pp. 9280-9288 ◽  
Author(s):  
Alexandre Darmon ◽  
Michael Benzaquen ◽  
Simon Čopar ◽  
Olivier Dauchot ◽  
Teresa Lopez-Leon

1983 ◽  
Vol 44 (10) ◽  
pp. 1179-1184 ◽  
Author(s):  
M. Vilfan ◽  
R. Blinc ◽  
J. Dolinšek ◽  
M. Ipavec ◽  
G. Lahajnar ◽  
...  

2021 ◽  
Vol 155 (5) ◽  
pp. 054903
Author(s):  
Jan-Christoph Eichler ◽  
Robert A. Skutnik ◽  
Marco G. Mazza ◽  
Martin Schoen

2021 ◽  
pp. e1881638
Author(s):  
Robert A. Skutnik ◽  
Jan-Christoph Eichler ◽  
Marco G. Mazza ◽  
Martin Schoen

2021 ◽  
Vol 114 ◽  
pp. 110960
Author(s):  
Lotfi Saadaoui ◽  
Ridha Hamdi

Sign in / Sign up

Export Citation Format

Share Document