scholarly journals An ultrafast and facile nondestructive strategy to convert various inefficient commercial nanocarbons to highly active Fenton-like catalysts

2022 ◽  
Vol 119 (3) ◽  
pp. e2114138119
Author(s):  
Junhui Wang ◽  
Qi Fu ◽  
Jiaxing Yu ◽  
Huangsheng Yang ◽  
Zhengping Hao ◽  
...  

The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The modified catalysts could be in situ fabricated by direct addition of PEI aqueous solution into the nanocarbon suspensions within 30 s and without any tedious treatment. The unexpectedly high catalytic activity is even superior to that of the single-atom catalyst and could reach as high as 400 times higher than the pristine carbon material. Theoretical and experimental results reveal that PEI creates net negative charge via intermolecular charge transfer, rendering the catalyst higher persulfate activation efficiency.

2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


2020 ◽  
Vol 49 (20) ◽  
pp. 6548-6552
Author(s):  
Yilin Jiang ◽  
Xu Zhang ◽  
Honghan Fei

We have summarized the recent in situ generation approaches to form metal-free NHC-functionalized MOFs, which are a unique class of CO2-conversion catalysts with high catalytic activity, selectivity and stability.


2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


2016 ◽  
Vol 40 (2) ◽  
pp. 1685-1692 ◽  
Author(s):  
Min Hong ◽  
Lidan Xu ◽  
Fangli Wang ◽  
Shuling Xu ◽  
Haibo Li ◽  
...  

Graphene oxide-supported hollow Au–Ag alloy nanocages were synthesized here, which exhibited short induction time, high catalytic activity and good stability against agglomeration for the reduction of 4-nitrophenol to 4-aminophenol.


2021 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Nicholas R. Jaegers ◽  
Hristiyan A. Aleksandrov ◽  
Libor Kovarik ◽  
Inhak Song ◽  
...  

Atom trapping allows to prepare catalysts with atomically dispersed Ru ions anchored to the ceria support. The resulting catalysts free of expensive noble metals such as Pt, Pd, Rh (whose prices are ~8-60 times higher than Ru on the per-molar basis) with Ru loadings of only 0.25-0.5 wt% show excellent activity in industrially important catalytic NO oxidation reaction, a critical step that requires use of relatively large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 catalysts are stable during continuous cycling, ramping and cooling as well as presence of moisture. Furthermore, Ru1/CeO2 shows excellent NOx storage properties during cold start, with improved NO adsorption compared with the best described Pd/Zeolite NO adsorbers with ~2-3 times higher Pd loadings. We clarify the location of Ru(II) ions on the ceria surface and identify mechanism of NO oxidation (as well as reactive storage) using DFT calculations and in-situ DRIFTS/Mass-spectroscopy measurements. Furthermore, we show the possible applications of Ru1/CeO2 in gasoline engines for NO reduction by CO: only 0.1 wt% of atomically dispersed Ru is sufficient to achieve high activity at low temperatures. With the aid of excitation-modulation in-situ infra-red measurements, we uncover the elementary steps of NO reduction by CO on an atomically dispersed ceria-supported catalyst. Our study highlights the potential applicability of single-atom catalysts to industrially relevant NO and CO abatement.


Nanoscale ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 8065-8094 ◽  
Author(s):  
Xudong Wen ◽  
Jingqi Guan

Different kinds of electrocatalysts used in NRR electrocatalysis (including single atom catalysts, metal oxide catalysts, nanocomposite catalysts, and metal free catalysts) are introduced.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


2020 ◽  
Author(s):  
Aidan Kelly ◽  
Peng-Jui (Ruby) Chen ◽  
Jenna Klubnick ◽  
Daniel J. Blair ◽  
Martin D. Burke

<div> <div> <div> <p>Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a mild and simple MIDA boronate synthesis procedure. This method expands the range of sensitive boronic acids that can be converted into their MIDA boronate counterparts. Further utilizing unique properties of MIDA boronates, we have developed a MIDA Boronate Maker Kit which enables the direct preparation and purification of MIDA boronates from boronic acids using only heating and centrifuge equipment that is widely available in labs that do not specialize in organic synthesis. </p> </div> </div> </div>


2021 ◽  
Vol 109 (4) ◽  
pp. 243-260 ◽  
Author(s):  
Yves Wittwer ◽  
Robert Eichler ◽  
Dominik Herrmann ◽  
Andreas Türler

Abstract A new setup named Fast On-line Reaction Apparatus (FORA) is presented which allows for the efficient investigation and optimization of metal carbonyl complex (MCC) formation reactions under various reaction conditions. The setup contains a 252Cf-source producing short-lived Mo, Tc, Ru and Rh isotopes at a rate of a few atoms per second by its 3% spontaneous fission decay branch. Those atoms are transformed within FORA in-situ into volatile metal carbonyl complexes (MCCs) by using CO-containing carrier gases. Here, the design, operation and performance of FORA is discussed, revealing it as a suitable setup for performing single-atom chemistry studies. The influence of various gas-additives, such as CO2, CH4, H2, Ar, O2, H2O and ambient air, on the formation and transport of MCCs was investigated. O2, H2O and air were found to harm the formation and transport of MCCs in FORA, with H2O being the most severe. An exception is Tc, for which about 130 ppmv of H2O caused an increased production and transport of volatile compounds. The other gas-additives were not influencing the formation and transport efficiency of MCCs. Using an older setup called Miss Piggy based on a similar working principle as FORA, it was additionally investigated if gas-additives are mostly affecting the formation or only the transport stability of MCCs. It was found that mostly formation is impacted, as MCCs appear to be much less sensitive to reacting with gas-additives in comparison to the bare Mo, Tc, Ru and Rh atoms.


Sign in / Sign up

Export Citation Format

Share Document