scholarly journals The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering

2022 ◽  
Vol 119 (2) ◽  
pp. e2116865118
Author(s):  
Shiv Shah ◽  
Caldon Jayson Esdaille ◽  
Maumita Bhattacharjee ◽  
Ho-Man Kan ◽  
Cato T. Laurencin

Stem cells are of great interest in tissue regeneration due to their ability to modulate the local microenvironment by secreting bioactive factors (collectively, secretome). However, secretome delivery through conditioned media still requires time-consuming cell isolation and maintenance and also may contain factors antagonistic to targeted tissue regeneration. We have therefore engineered a synthetic artificial stem cell (SASC) system which mimics the paracrine effect of the stem cell secretome and provides tailorability of the composition for targeted tissue regeneration. We report the first of many applications of the SASC system we have formulated to treat osteoarthritis (OA). Choosing growth factors important to chondrogenesis and encapsulating respective recombinant proteins in poly (lactic-coglycolic acid) 85:15 (PLGA) we fabricated the SASC system. We compared the antiinflammatory and chondroprotective effects of SASC to that of adipose-derived stem cells (ADSCs) using in vitro interleukin 1B-induced and in vivo collagenase-induced osteoarthritis rodent models. We have designed SASC as an injectable therapy with controlled release of the formulated secretome. In vitro, SASC showed significant antiinflammatory and chondroprotective effects as seen by the up-regulation of SOX9 and reduction of nitric oxide, ADAMTS5, and PRG4 genes compared to ADSCs. In vivo, treatment with SASC and ADSCs significantly attenuated cartilage degeneration and improved the biomechanical properties of the articular cartilage in comparison to OA control. This SASC system demonstrates the feasibility of developing a completely synthetic, tailorable stem cell secretome which reinforces the possibility of developing a new therapeutic strategy that provides better control over targeted tissue engineering applications.

2006 ◽  
Vol 18 (2) ◽  
pp. 208 ◽  
Author(s):  
A. S. Lima ◽  
S. A. Malusky ◽  
M. R. B. Mello ◽  
S. J. Lane ◽  
J. R. Rivera ◽  
...  

A primary concern in stem cell biology is that observations made in vitro may be an artifact of the in vitro culture environment. In vitro derived stem cells can be implanted into the environment from which they are derived so that their response to physiological conditions may be observed. Several important cellular characteristics need to be examined following the cell's reintroduction to the in vivo environment, including the potential for differentiation, proliferative ability, and life span. Studying implanted stem cells will assist in determining the potential for stem cell use in clinical therapies and provide further understanding of the role adult stem cells have in the adult body. Currently, the scientific literature is lacking a detailed description of the cellular response of adipose-derived stem cells (ADSCs) reintroduced to their exact tissue of origin. Thus, the aim of this study was to evaluate porcine ADSC growth in vivo and to analyze cell differentiation in vivo following injection of undifferentiated ADSCs into subcutaneous fat. Subcutaneous adipose tissue was isolated from the back fat of male pigs (11 months of age) and digested with 0.075% collagenase at 37�C for 90 min. The digested tissue was centrifuged at 200g for 10 min to obtain a cell pellet. The pellet was re-suspended with DMEM and the ADSCs were plated onto 75 cm2 flasks (5000-10 000 cells per cm2) and cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 1% gentamicin. Passage 3 ADSCs were labeled with fluorescent dye (PKH26; Sigma, St. Louis, MO, USA) and sorted by flow cytometry. After sorting, positive cells were washed and re-suspended in culture medium. For transplantation, 100 �L of cell suspension in DMEM containing one of four cell concentrations (0 (control); 30 000; 300 000; and 900 000 cells) were placed in a 1-mL syringe and injected into the subcutaneous back fat of recipient pigs (n = 2). Each pig had previously been tattooed with 12 13 � 13 squares to mark injection sites. The treatments were replicated three times within each animal. Two and three weeks after transplantation, animals were euthanized, the back fat containing the transplantation site was harvested, and the cells were disaggregated as described above. The buoyant adipocytes and pelleted ADSCs cells were then analyzed by flow cytometry. The results indicated that there were dose- and time-dependent increases in labeled ADSCs and labeled adipocytes in the fat samples with increasing cell number (from 0 to 300 000 cells). There was, however, a decrease in labeled ADSCs at the 900 000-cell dose, which is likely due to excess cells being transplanted or an immune reaction. Both of these aspects are currently being evaluated. In conclusion, undifferentiated ADSCs from swine can be isolated from and returned to the subcutaneous adipose layer and differentiate into mature adipocytes. This work was supported by the Council for Food and Agricultural Research (C-FAR) Sentinel Program, University of Illinois.


2013 ◽  
Vol 2013 ◽  
pp. 1-35 ◽  
Author(s):  
Patricia Zuk

In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.


2015 ◽  
Vol 35 (4) ◽  
Author(s):  
Qinying Liu ◽  
Yangmei Xu ◽  
Shenghong Wei ◽  
Wei Gao ◽  
Li Chen ◽  
...  

Our study revealed that miR-148b was specifically down-regulated in hepatic cancer stem cells (HCSCs) and affected cell proliferation and metastasis in vitro and tumorigenicity in vivo by directly targeting to Neuropilin-1(NRP-1), a transmembrane co-receptor involved in metastasis, suggesting that enforced miR-148b expression might be an efficient therapeutic strategy to eradicate HCSCs and reduce metastasis.


2016 ◽  
Vol 12 ◽  
pp. 38-47 ◽  
Author(s):  
Aleksandra Skubis ◽  
Bartosz Sikora ◽  
Nikola Zmarzły ◽  
Emilia Wojdas ◽  
Urszula Mazurek

This review article provides an overview on adipose-derived stem cells (ADSCs) for implications in bone tissue regeneration. Firstly this article focuses on mesenchymal stem cells (MSCs) which are object of interest in regenerative medicine. Stem cells have unlimited potential for self-renewal and develop into various cell types. They are used for many therapies such as bone tissue regeneration. Adipose tissue is one of the main sources of mesenchymal stem cells (MSCs). Regenerative medicine intends to differentiate ADSC along specific lineage pathways to effect repair of damaged or failing organs. For further clinical applications it is necessary to understand mechanisms involved in ADSCs proliferation and differentiation. Second part of manuscript based on osteogenesis differentiation of stem cells. Bones are highly regenerative organs but there are still many problems with therapy of large bone defects. Sometimes there is necessary to make a replacement or expansion new bone tissue. Stem cells might be a good solution for this especially ADSCs which manage differentiate into osteoblast in in vitro and in vivo conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Wang ◽  
Shaojie Shi ◽  
Ruiping Bai ◽  
Yue Wang ◽  
Zhao Guo ◽  
...  

Abstract Background Patients with type 2 diabetes mellitus (T2DM), especially those with poor glycemic control, are characterized by low bone mass and destruction of bone microstructure. Nowadays, autologous mesenchymal stem cells (auto-MSCs) have been used to repair defects and promote tissue regeneration due to handy source, low immunogenicity and self-renewing and multi-differentiating potential. However, T2DM changed the biological properties of auto-MSCs, and investigating the most suitable auto-MSCs for T2DM patients becomes a focus in tissue engineering. Results In this research, we compared the biological characteristics of adipose-derived stem cells (ASCs) and bone marrow stem cells (BMSCs) derived from T2DM rats. These results demonstrated that ASCs had a higher proliferation rate, colony-formation and cell-sheet forming ability, while BMSCs got better osteogenesis-related staining, expression of osteogenesis-related genes and proteins, and osteogenic capacity in vitro. Conclusions As it turned out, ASCs from T2DM had a higher proliferation, while BMSCs had significantly higher osteogenetic ability no matter in vitro and in vivo. Therefore, we should take into account the specific and dominated properties of MSC according to different needs to optimize the protocols and improve clinical outcomes for tissue regeneration of T2DM patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kshitiz Raj Shrestha ◽  
So Young Yoo

Self-renewal and differentiation of stem cells can be the best option for treating intractable diseases in regenerative medicine, and they occur when these cells reside in a special microenvironment, called the “stem cell niche.” Thus, the niche is crucial for the effective performance of the stem cells in bothin vivoandin vitrosince the niche provides its functional cues by interacting with stem cells chemically, physically, or topologically. This review provides a perspective on the different types of artificial niches including engineered phage and how they could be used to recapitulate or manipulate stem cell niches. Phage-based artificial niche engineering as a promising therapeutic strategy for repair and regeneration of tissues is also discussed.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


Sign in / Sign up

Export Citation Format

Share Document