scholarly journals The Proteome of the Dentate Terminal Zone of the Perforant Path Indicates Presynaptic Impairment in Alzheimer Disease

2019 ◽  
Vol 19 (1) ◽  
pp. 128-141 ◽  
Author(s):  
Hazal Haytural ◽  
Georgios Mermelekas ◽  
Ceren Emre ◽  
Saket Milind Nigam ◽  
Steven L. Carroll ◽  
...  

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.

1996 ◽  
Vol 76 (1) ◽  
pp. 601-616 ◽  
Author(s):  
M. B. Jackson ◽  
H. E. Scharfman

1. Microelectrode recording and fluorescence measurement with voltage-sensitive dyes were employed in horizontal hippocampal slices from rat to investigate responses in the dentate gyrus to molecular layer and hilar stimulation. 2. Both field potential and dye fluorescence measurement revealed that electrical stimulation of the molecular layer produced strong excitation throughout large regions of the dentate gyrus at considerable distances from the site of stimulation. 3. Treatment of slices with the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and (+/-)-2-amino-5-phosphonovaleric acid (APV) unmasked dye fluorescence signals in the outer and middle molecular layers corresponding to action potentials in axons, presumably belonging to the perforant path. The spread of these axonal signals away from the site of stimulation was far less extensive than the spread of control signals through the same regions before blockade of excitatory synapses. Large control responses could be seen in regions distant from the stimulation site where the axonal signals were not detectable. A lack of correlation between control signals and axonal signals revealed by DNQX and APV supports the hypothesis that responses in distal regions of the molecular layer were not dependent on perforant path axons. 4. The perforant path was cut by producing a lesion in the outer two-thirds of the molecular layer. Both dye fluorescence and microelectrode recording showed that stimulation on one side of the lesion could produce signals on the same side as well as across the lesion. The lesion did not block the spread of excitation through the molecular layer. Across the lesion from the site of stimulation, negative-going field potentials were observed to peak in the inner molecular layer, which is the major field of projection of hilar mossy cells. 5. Electrical stimulation in the hilus adjacent to the granule cell layer evoked dye fluorescence responses in the molecular layer. Stimulation at this site evoked negative-going field potentials that peaked in the inner molecular layer. These signals were sensitive to excitatory amino acid receptor antagonists but not to gamma-aminobutyric acid-A (GABAA) receptor antagonists. 6. Activation of excitatory amino acid receptors in the hilus by focal application of (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) elicited negative-going field potentials in the granule cell layer and depolarization of granule cells. Field potentials were blocked by tetrodotoxin (TTX), indicating that they were not caused by direct activation of receptors on granule cells, but rather by synapses from hilar neurons on granule cells. 7. These results taken together with previous studies of hilar mossy cells suggest a fundamental circuit consisting of granule cells exciting hilar mossy cells, which then excite more granule cells. This circuit provides positive feedback and can be considered a form of "recurrent excitation" unique to the dentate gyrus. The robustness of this circuit in hippocampal slices under control conditions suggest that mossy cell excitation of granule cells could play an important role in the normal activity of the hippocampus, and, when inhibition is compromised, this circuit could contribute to the generation and spread of seizures.


1994 ◽  
Vol 72 (4) ◽  
pp. 1697-1705 ◽  
Author(s):  
M. L. Simmons ◽  
G. W. Terman ◽  
C. T. Drake ◽  
C. Chavkin

1. Activation of kappa 1-opioid receptors inhibits excitatory transmission in the hippocampal dentate gyrus of the guinea pig. The present studies used both anatomic and physiological approaches to distinguish between a pre- and postsynaptic localization of these receptors. 2. The entorhinal cortex was lesioned unilaterally to cause degeneration of perforant path afferents to the dentate molecular layer, and kappa 1-opioid binding sites were measured by labeling with the selective agonist, [3H]-U69593. Binding density was reduced significantly in the dentate gyrus molecular layer ipsilateral to the lesion compared with the contralateral molecular layer and with sham-lesioned controls. 3. Paired-pulse facilitation is a neurophysiologic paradigm that has been used to differentiate pre- and postsynaptic sites of action for agents that inhibit excitatory neurotransmission. U69593 reduced the amplitude of single population spikes and increased the degree of paired pulse facilitation. The potentiation of paired-pulse facilitation was maintained when the stimulation intensity was increased to compensate for the inhibition of excitatory transmission. These effects of kappa 1-receptor activation were similar to those seen after presynaptic inhibition of excitatory neurotransmitter release and support the hypothesis that U69593 presynaptically inhibits excitatory amino acid release in the dentate gyrus. 4. Local application of glutamate by pressure ejection in the dentate molecular layer evoked field excitatory postsynaptic potentials that mimicked those evoked by electrical stimulation of the perforant path. Both responses were sensitive to the non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione. U69593 inhibited responses evoked by perforant path stimulation but had no effect on responses evoked by glutamate application.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 79 (1) ◽  
pp. 496-499 ◽  
Author(s):  
Elhoucine Messaoudi ◽  
Kjetil Bårdsen ◽  
Bolek Srebro ◽  
Clive R. Bramham

Messaoudi, Elhoucine, Kjetil Bårdsen, Bolek Srebro, and Clive R. Bramham. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentategyrus. J. Neurophysiol. 79: 496–499, 1998. The effect of acuteintrahippocampal infusion of brain-derived neurotrophic factor (BDNF) on synaptic transmission in the dentate gyrus was investigated in urethan-anesthetized rats. Medial perforant path-evoked field potentials were recorded in the dentate hilus and BDNF-containing buffer was infused (4 μl, 25 min) immediately above the dentate molecular layer. BDNF led to a slowly developing increase of the field excitatory postsynaptic potential (fEPSP) slope and population spike amplitude. The potentiation either reached a plateau level at ∼2 h after BDNF infusion or continued to increase for the duration of experiment; the longest time point recorded was 10 h. Mean increases at 4 h after BDNF infusion were 62.2 and 224% for the fEPSP slope and population spike, respectively. No changes in responses were observed in controls receiving buffer medium only or buffer containing cytochrome C. BDNF-induced potentiation developed in the absence of epileptiform activity in the hippocampal electroencephalogram or changes in recurrent inhibition on granule cells as assessed by paired-pulse inhibition of the population spike. We conclude that exogenous BDNF induces a lasting potentiation of synaptic efficacy in the dentate gyrus of anesthetized adult rats.


1980 ◽  
Vol 44 (5) ◽  
pp. 937-950 ◽  
Author(s):  
J. Winson

1. In chronically prepared, freely moving rats, electrical stimulation was applied to the perforant pathway and monosynaptic responses were recorded extracellularly in the ipsilateral dentate gyrus. In some tests a stimulus was also applied to the median raphe nucleus (mr) prior to activating the perforant pathway. Experiments were performed during two behavioral conditions: slow-wave sleep (SWS) and the still, alert state (SAL). Two varieties of evoked responses were recorded: those due to synchronous firing of neuronal action potentials (evoked action potentials or EAPs) and those produced by excitatory synaptic activity (evoked synaptic potentials or ESPs). 2. As reported previously (38), perforant path stimulation elicited EAPs of greater magnitude during SWS than during SAL. The application of a prior stimulus to mr (prestimulation) markedly increased the already elevated EAPs observed during SWS. The EAPs during SAL were unaffected by prestimulation. 3. The minimum delay time (time between mr and perforant path stimuli) at which the augmentation of the EAPs appeared during SWS was approximately 5 ms. The augmentation reached a maximum at delay times of 25-40 ms and was present up to a delay time of 150 ms. 4. As in former experiments (38), ESPs recorded in the molecular layer of the dentate gyrus after perforant path stimulation were found to be greater during SAL than during SWS. Prestimulation of mr had no significant effect on the ESPs at any level of the molecular layer during either SWS or SAL. 5. The perforant path afferent volley was recorded at high gain in the dentate gyrus. Its amplitude was found to be solely dependent on perforant path stimulus intensity and not on behavioral state or the prestimulation of mr. 6. In preparations anesthetized with Chloropent (82% chloral hydrate, 18% pentobarbital; Fort Dodge Laboratories, Fort Dodge, IA), prestimulation was applied at each of a number of loci within the pons and medulla, including mr, As in SWS, prestimulating mr resulted in augmented EAPs with a minimum delay time of 5 ms. Similar augmented responses were observed when stimulation was applied at other raphe nuclei (dorsal raphe, pontis, magnus, and pallidus), but there was no augmentation when stimulation was applied at other brain stem sites. Threshold stimulus intensities for producing augmented EAPs in the raphe nuclei were less than 30 microA. 7. In freely moving animals it was first established that the EAP responses during SWS were markedly greater than during SAL. Midline lesions were then made at the rostrocaudal level of mr. Following the lesions, there was no longer any significant difference in the magnitude of the EAPs recorded during the two behaviors. 8. These findings suggest that tonic influences arising from raphe nuclei during SWS may be involved in the facilitation of neuronal transmission through the dentate gyrus observed during this behavioral state.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Mei Yuan ◽  
Thomas Meyer ◽  
Christoph Benkowitz ◽  
Shakuntala Savanthrapadian ◽  
Laura Ansel-Bollepalli ◽  
...  

Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum.


2013 ◽  
Vol 110 (22) ◽  
pp. 9106-9111 ◽  
Author(s):  
Y. Li ◽  
F. J. Stam ◽  
J. B. Aimone ◽  
M. Goulding ◽  
E. M. Callaway ◽  
...  

2021 ◽  
Author(s):  
Sara Rodrigues ◽  
Marta Anglada-Huguet ◽  
Katja Hochgräfe ◽  
Senthilvelrajan Kaniyappan ◽  
Susanne Wegmann ◽  
...  

Abstract Background: The stereotypical progression of Tau pathology during Alzheimer disease has been attributed to trans-neuronal spreading of misfolded Tau proteins, followed by prion-like templated aggregation of Tau. The nature of Tau and the cellular mechanisms of Tau spreading are still under debate. We hypothesized that Tau's propensity for aggregation would correlate with its ability to spread across synapses and propagate pathology.Methods: To study the progressive propagation of Tau proteins in brain regions relevant for Alzheimer disease, we used mice expressing near-physiological levels of full-length human Tau protein carrying pro-aggregant (TauΔK280, TauΔK) or anti-aggregant (TauΔK280-PP, TauΔK-PP) mutations in the entorhinal cortex (EC). To enhance Tau expression in the EC, we performed EC injections of adeno-associated virus (AAV) particles encoding TauΔK or TauΔK-PP. The brains of injected and non-injected EC/TauΔK and EC/TauΔK-PP mice were studied by immunohistological and biochemical techniques to detect Tau propagation to dentate gyrus (DG) neurons and Tau-induced pathological changes.Results: Pro- and anti-aggregant mice had comparable low transgene expression (~0.2-times endogenous mouse Tau). They accumulated human Tau at similar rates and only in expressing EC neurons, including their axonal projections of the perforant path and presynaptic terminals in the molecular layer of the DG. Pro-aggregant EC/TauΔK mice showed misfolded Tau and synaptic protein alterations in EC neurons, not observed in anti-aggregant EC/TauΔK-PP mice. Additional AAV-mediated expression of TauΔK or TauΔK-PP in EC/TauΔK or EC/TauΔK-PP mice, resp., increased the human Tau expression to ~0.65-times endogenous mouse Tau, with comparable spreading of TauΔK and TauΔK-PP throughout the EC. There was a low level of transcellular propagation of Tau protein, without pathological phosphorylation or misfolding, as judged by diagnostic antibodies. Additionally, TauΔK but not TauΔK-PP expression induced hippocampal astrogliosis.Conclusions: Low levels of pro- or anti-aggregant full-length Tau show equivalent distributions in EC neurons, independent of their aggregation propensity. Increasing the expression via AAV induce local Tau misfolding in the EC neurons, synaptotoxicity, and astrogliosis, and lead to a low level of detectable trans-neuronal spreading of Tau. This depends on its concentration in the EC, but, contrary to expectations, does not depend on Tau's aggregation propensity/misfolding, and does not lead to templated misfolding in recipient neurons.


2020 ◽  
Author(s):  
Hazal Haytural ◽  
Tomás Jordá-Siquer ◽  
Bengt Winblad ◽  
Christophe Mulle ◽  
Lars O. Tjernberg ◽  
...  

AbstractSynaptic degeneration has been reported as one of the best pathological correlate of cognitive deficit in Alzheimer’s Disease (AD). However, the location of these synaptic alterations within hippocampal sub-regions, the vulnerability of the presynaptic versus postsynaptic compartments, and the biological mechanisms for these impairments remain unknown. Here, we performed immunofluorescence labeling of different synaptic proteins in fixed and paraffin embedded human hippocampal sections and report reduced levels of several presynaptic proteins of the neurotransmitter release machinery (complexin-1, syntaxin-1A, synaptotagmin-1 and synaptogyrin-1) in AD cases. The deficit was restricted to the outer molecular layer (OML) of the dentate gyrus whereas other hippocampal sub-fields were preserved. Interestingly, standard markers of postsynaptic densities (SHANK2) and dendrites (MAP2) were unaltered, as well as the relative number of granule cells in the dentate gyrus, indicating that the deficit is preferentially presynaptic. Notably, staining for the axonal components, myelin basic protein, SMI-312 and Tau, was unaffected, suggesting that the local presynaptic impairment does not result from axonal loss or alterations of structural proteins of axons. There was no correlation between the reduction in presynaptic proteins in OML and the extent of the amyloid load or of the dystrophic neurites expressing phosphorylated forms of Tau. Altogether, this study highlights the distinctive vulnerability of the OML of dentate gyrus and supports the notion of presynaptic failure in AD.


2002 ◽  
Vol 88 (6) ◽  
pp. 3078-3086 ◽  
Author(s):  
Michael V. Baratta ◽  
Tyra Lamp ◽  
Melanie K. Tallent

The selective loss of somatostatin (SST)-containing interneurons from the hilus of the dentate gyrus is a hallmark of epileptic hippocampus. The functional consequence of this loss, including its contribution to postseizure hyperexcitability, remains unclear. We address this issue by characterizing the actions of SST in mouse dentate gyrus using electrophysiological techniques. Although the majority of dentate SST receptors are located in the outer molecular layer adjacent to lateral perforant path (LPP) synapses, we found no consistent action of SST on standard synaptic responses generated at these synapses. However, when SST was present during application of high-frequency trains that normally generate long-term potentiation (LTP), the induction of LTP was impaired. SST did not alter the maintenance of LTP when applied after its induction. To examine the mechanism by which SST inhibits LTP, we recorded from dentate granule cells and examined the actions of this neuropeptide on synaptic transmission and postsynaptic currents. Unlike findings in the CA1 hippocampus, we observed no postsynaptic actions on K+ currents. Instead, SST inhibited Ca2+/Ba2+ spikes evoked by depolarization. This inhibition was dependent on N-type Ca2+currents. Blocking these currents also blocked LTP, suggesting a mechanism through which SST may inhibit LTP. Our results indicate that SST reduction of dendritic Ca2+ through N-type Ca2+ channels may contribute to modulation of synaptic plasticity at LPP synapses. Therefore the loss of SST function postseizure could result in abnormal synaptic potentiation that contributes to epileptogenesis.


Sign in / Sign up

Export Citation Format

Share Document