scholarly journals Rumen fill and digesta kinetics in lactating Friesian cows given two levels of concentrates with two types of grass silage ad lib

1991 ◽  
Vol 66 (3) ◽  
pp. 381-398 ◽  
Author(s):  
J. Gasa ◽  
K. Holtenius ◽  
J. D. Sutton ◽  
M. S. Dhanoa ◽  
D. J. Napper

Four lactating Friesian cows with permanent cannulas in the rumen and proximal duodenum were given early (EC)- or late (LC)-cut grass silage ad lib., each with either 3 or 9 kg concentrate dry matter (DM)/d in a 4 x 4 Latin square design starting about 10 weeks after calving. Feed was offered twice daily at 08.30 hours and 15.30 hours. Periods lasted 5 weeks and measurements were made in the last 15 d. The higher amount of concentrates increased total DM intake but reduced silage DM intake and the fractional rate of degradation of silage-fibre DM. Later cutting date of silage had no effect on DM intake or the fractional rate of degradation of silage-fibre DM but reduced potential degradability of silage fibre. Dilution rate of CoEDTA in rumen fluid was greater during the day (eating period) than during the night (resting period). Dilution rates measured at the duodenum were lower than those measured in the rumen, but neither was affected by diet. Silage-particle passage rates were measured by use of ytterbium-labelled silage fibre (Yb-fibre) and chromium-mordanted faecal particles (Cr-faeces) and samples were taken at the duodenum and in the faeces. Values for slower rate constant (k1) and transit time were higher and for faster rate constant (k2) were lower for Yb-fibre than for Cr-faeces, but differences in total mean retention time were inconsistent. Values for k1 for both markers and k2 for Yb-fibre only were similar at both sampling sites, but values for k2 for Cr-faeces were lower in the faeces. No diet effects were established with Yb-fibre but, with Cr-faeces, k1 was reduced by more concentrates and EC-silage. Daily mean weights of wet digesta, liquid, neutral-detergent fibre (NDF) and indigestible NDF in the rumen were greater with LC-silage but were unaffected by the amount of concentrates whereas weight of rumen DM was increased by the amount of concentrates only. Maximum rumen fill occurred at 18.00 hours with all diets. Particle-size distribution of rumen contents did not vary markedly during the day. Mean particle size was generally greater with LC-silage than EC-silage. Very small particles, passing through the 0.3 mm screen, constituted about half the rumen DM. It is concluded that rumen fill could have limited intake of LC-silage but not EC-silage. The reduced silage intake with greater concentrate intake was associated with a reduction in fibre degradation rate and an increase in rumen DM fill but no other consistent effects on weight or kinetics of rumen fractions were established.

2008 ◽  
Vol 88 (4) ◽  
pp. 685-692
Author(s):  
D. R. Ouellet ◽  
L. Faucitano ◽  
D. Pellerin ◽  
M. D’Amours ◽  
R. Berthiaume

Two experiments were conducted to determine the relationship between corn particle size and soybean meal treatment on growth, diet digestibility, and nitrogen balance of growing steers. In the first experiment, 40 medium-frame beef steers (250 ± 11 kg) were fed individually for 140 d a diet based on grass silage offered for ad libitum consumption and supplemented with either 3.5 kg of DM d-1 of cracked corn (CC) or ground corn (GC) and with 450 g of DM d-1 of solvent extracted (SS) or lignosulfonate-treated soybean meal (Soypass™ SP). Dry matter intake was not affected by treatments and averaged 8.6 ± 0.3 kg d-1 (P > 0.10). Average daily gain was higher for animals receiving the ground corn than those fed cracked corn. Feed to gain ratio was not affected by treatments. There was an interaction between treatments for plasma urea-N concentration, with source of soybean meal having no effect with CC. When compared with SS, SP supplement reduced plasma urea-N when fed with GC. No effect of soybean meal and its interaction with corn processing was observed on growth performance. In the second experiment four additional steers were used in a 4 × 4 Latin square design to evaluate diet digestibility and nitrogen balance. There was an interaction between treatments for starch apparent digestibility and N retained, the values being respectively, 90, 86, 93, and 92% (SEM = 1.2; P < 0.01) and 36, 42, 44 and 41 g d-1 (SEM = 2.8; P < 0.03) for CCSS, CCSP, GCSS and GCSP, respectively. Altogether, the results indicate a slight advantage to reduce particle size of corn in growing steers fed grass silage. However, soybean meal treatment resulted in limited effects on growth and digestion. Key words: Rumen carbohydrate, undegradable protein, performance, steers


Author(s):  
F.P. O'Mara ◽  
J.J. Murphy ◽  
M. Rath

Milk protein synthesis may be limited by amino acid (AA) flow to the duodenum. This can be increased by increasing the flow of microbial AA's or undegraded feed AA's. This experiment was carried out to determine the effect on milk production and nutrient flows at the duodenum of including fishmeal (120g/kg) in the supplement to grass silage at two levels of supplement feeding.The treatments, arranged in a 2x2 factorial, were 1.) 3.5 kg/day of 0% fishmeal supplement (L-UDP), 2.) 7 kg/day of L-UDP, 3.) 3.5 kg/day of 12% fishmeal supplement (H-UDP), and 4.) 7 kg/day of H-UDP. Supplements were fed to 3 6 Friesian cows in a 4x4 multiple Latin-square trial with three week periods to determine production responses, and to four ruminally and duodenally cannulated cows to determine rumen fermentation and nutrient flows. Flows were determined by the dual marker technique of Faichney (1975) using cobalt-EDTA and ytterbium acetate as liquid and solid phase markers respectively. Purines were used as the bacterial marker (Zinn and Owens, 1986). Degradability of the feeds was measured in 3 other cows using the small bag technique described by De Boer et al. (1987).


2000 ◽  
Vol 2000 ◽  
pp. 1-1 ◽  
Author(s):  
R. J. Dewhurst ◽  
R. J. Merry ◽  
D. R. Davies ◽  
J. M. Moorby ◽  
N. D. Scollan ◽  
...  

Poor animal performance associated with low digestibility silages results partly from the reduced nutrient yield per unit intake, but also from the associated lower intakes which were presumed to be a consequence of rumen fill effects. Legume silages have a lower average digestibility than grass silages, and yet often have higher intake characteristics. The objective of this work was to compare rumen fill and rumen particle size distribution for animals fed grass silage or legume silage-based diets.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 961
Author(s):  
Ignacio E. Beltran ◽  
Pablo Gregorini ◽  
José Daza ◽  
Oscar A. Balocchi ◽  
Alvaro Morales ◽  
...  

The objective of this work was to evaluate whether changes in time of herbage allocation and herbage mass (HM) (low (L) or medium (M)) modify the diurnal pattern of urinary nitrogen (N) concentration and ruminal ammonia (NH3) of lactating dairy cows. Four Holstein-Friesian cows fitted with rumen cannula were randomly allocated to one of four treatments: 1) low herbage mass in the morning (L-AM) (Access to new herbage allocation after morning milking with a herbage mass (HM) of 2000 kg DM/ha); 2) low herbage mass in the afternoon (L-PM) (Access to new herbage allocation after afternoon milking with a HM of 2000 kg DM/ha); 3) medium herbage mass in the morning (M-AM) (Access to new herbage allocation after morning milking with a HM of 3000 kg DM/ha); and 4) medium herbage mass in the afternoon (M-PM) (Access to new herbage allocation after afternoon milking with a HM of 3000 kg DM/ha). A four by four Latin Square design with four treatments, four cows, and four experimental periods was used to evaluate treatment effects. Rumen NH3 concentration was greater for L-AM compared to L-PM and M-PM at 13:00 and 16:00 h. Urine urea and N concentrations were lower for M-AM compared to L-AM. Urine N concentration was greater for L-AM than other treatments at 10:00 hours and greater for M-PM compared to M-AM at 16:00 hours. Results suggest that maintaining the cows in the holding pen at the milking parlor for two hours after morning grass silage supplementation for L-AM and for two hours after afternoon grass silage supplementation for M-PM, could allow collection of urine from cows at the holding pen and storage of urine in the slurry pit during the time of peak N concentration, returning cows to the pasture at a time of day when urinary N concentration is decreased.


2004 ◽  
Vol 71 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Surasak Jittakhot ◽  
J Thomas Schonewille ◽  
Hugo Wouterse ◽  
Anton WJ Uijttewaal ◽  
Chalermpon Yuangklang ◽  
...  

Earlier studies with temporarily isolated rumen of heifers show saturation kinetics of Mg efflux across the rumen wall. Therefore, we hypothesized that high Mg intakes would not further increase the rate of Mg absorption in cows. To test our hypothesis, six ruminally fistulated non-pregnant dry cows were given diets with different Mg concentrations in a 6×6 Latin square design. Desired concentrations of Mg were attained by adding MgO to the basal diet and the Mg concentrations in the total rations were 3·8, 6·4, 9·1, 11·8, 14·1 and 17·3 g Mg/kg dry matter, which provided Mg intakes of 27·1, 44·6, 64·6, 83·5, 100·4 and 124·3 g/d, respectively. Increasing Mg intakes were associated with increased (P<0·001) faecal Mg excretion. However, apparent Mg absorption expressed as g/d was not significantly different for Mg intakes from 100·4 to 124·3 g/d while Mg absorption expressed as a proportion of intake was not significantly different for Mg intakes ranging from 64·6 to 124·3 g/d. Mg concentrations in rumen fluid after feeding increased (P<0·001) with increasing Mg intakes. Apparent absorption of Mg appeared to become saturated at a ruminal Mg concentration of 17·5 mM (Mg intake of 83·5 g/d). Group-mean post-feeding concentrations of Mg and Na in rumen fluid were significantly correlated (Pearson's r=−0·96; P=0·003, n=6). This study showed that under conditions of practical dairy cow feeding, Mg absorption was maximal at Mg intakes [ges ]84 g/d.


1994 ◽  
Vol 72 (1) ◽  
pp. 147-165 ◽  
Author(s):  
S. J. Oosting ◽  
P. J. M. Vlemmix ◽  
J. Van Bruchem

Untreated wheat straw (UWS) or ammoniated wheat straw without (AWS) or with (AWSP) a supplement of potato protein of a low rumen degradability was fed to three steers according to a 3 × 3 Latin square design. All rations were supplemented with sugar-beet pulp and minerals. Voluntary organic matter intake (OMI, g/kg0.75 per d) was 67.8, 76.0 and 80.1 for whole rations (51.1, 59.7 and 59.2 for straw) for UWS, AWS and AWSP respectively, which was significantly higher for AWS and AWSP than for UWS. Organic matter digestibility (OMD, g/kg) was 561, 596 and 625 for the respective rations UWS, AWS and AWSP, also significantly higher for AWS and AWSP than for UWS. The increased voluntary intake and digestion of ammoniated wheat-straw-based rations were associated with a significantly higher potentially degradable fraction (D) of neutral detergent fibre (NDF) in offered straw (556 and 661 g/kg for untreated and ammoniated wheat straw respectively) and in the rumen pool (469, 555 and 554 g/kg for UWS, AWS and AWSP respectively). Isolated small rumen particles (retained on sieves with a pore size < 1.25 and > 0.041 mm) had a significantly lower D of NDF (average 588 g/kg) than isolated large rumen particles (average 663 g/kg). Fractional rates of degradation of NDF did not differ significantly either between untreated and ammonia-treated wheat straw offered (2.9 and 2.6%/h respectively) or between rumen pools (1.8, 1.7 and 2.1 %/h for UWS, AWS and AWSP respectively). Rations based on ammoniated wheat straw had a significantly higher rumen NH3-N concentration than UWS. Although the rumen pool size of total contents differed significantly between treatments, those of dry and organic matter and of cell wall constituents were not significantly different. The proportion of rumen dry matter passing through a sieve with a pore size of 1.25 mm averaged 0.684 over rations (not significantly different between rations). Daily rumination (96 min) and eating (52 min) times/kg NDF ingested did not differ between rations. The rate of comminution of large particles estimated from the disappearance of indigestible NDF in large rumen particles from the rumen of animals without access to feed was 4.1, 6.3 and 7.1 %/h for UWS, AWS and AWSP respectively. These values were not significantly different. The fractional rate of passage estimated from the faecal excretion of Cr-NDF was 5.4, 6.1 and 6.3%/h for UWS, AWS and AWSP respectively (significantly higher for AWS and AWSP than for UWS) but the turnover rate of indigestible NDF did not differ between treatments.


1993 ◽  
Vol 41 (3) ◽  
pp. 221-234
Author(s):  
H. De Visser ◽  
H. Huisert ◽  
A. Klop ◽  
R.S. Ketelaar

In a 4 x 4 Latin square experiment the effects of DM content and/or the extent of fermentation in grass silages on the pattern of rumen fermentation and rumen kinetics were studied. In a separate study two cows were used to measure the rate of degradation using the dacron bag technique. Four rumen cannulated dairy cows were used to measure rumen fermentation pattern, rumen kinetics were measured in three of these animals. Basal diets (70% of total DM) consisted of maize silage, moist ensiled beet pulp, moist ensiled maize gluten feed, moist ensiled brewers' grains and a concentrate mixture. The remainder of the diet (30% of total DM) was wilted grass silage (WGS), high moisture grass silage with molasses (MGS), high moisture silage with formic acid (FGS) or wilted grass silage with additional water (WW). All diets were fed as complete feeds. pH of the rumen fluid was lower on the MGS and FGS diets. Concentrations of total VFA, acetic acid, ammonia and branched-chain fatty acids (BCFA) were highest on high moisture diets (MGS and FGS). Rates of clearance and digestion of the organic matter (OM) fractions were or showed tendencies towards being negatively influenced by both MGS and FGS, but remained unaffected by WGS and WW. Degradability of the grass silages was influenced by fermentation in the silo (lower digestible fractions and higher soluble fractions), as were rates of degradation (higher). Results of the degradability measured on the basal diet ingredients were in agreement with published literature and showed a strong correlation between OM digestibility in vitro and the undigestible fraction.


2009 ◽  
Vol 54 (No. 6) ◽  
pp. 260-269
Author(s):  
B. Niwińska

The effect of carbohydrates included in grass silage-based diets on <I>in sacco</I> degradability of dry matter (DM), crude protein (CP), neutral detergent fibre (NDF) and cellulose (CE) of barley (<I>Hordeum vulgare</I> L. cv. Lomerit) grain ground to different particle sizes was studied using 3 ruminally cannulated cows. The measurements were carried out as a 3 × 2 Latin square design with treatments being carbohydrates in the concentrate portion of diets (starch in diet I vs. pectin in diet II vs. sucrose in diet III) and particle size of ground barley grain (1.0 vs. 5.7 mm). The diet synchronization index between N and energy supply during the day was an average of 0.8. The rumen degradability of barley grain compounds was influenced by the type of carbohydrates included in grass silage-based diets. Higher rumen degradation rates (<I>P</I> < 0.05) of barley CP, NDF and CE after 8 h of incubation and of CP and CE after 16 h of incubation were found in the rumen of cows receiving the diet containing sucrose compared with degradation rates found in the rumen of cows receiving the diet containing pectin or starch. The effective degradability of DM, CP, NDF and CE of barley grain in the rumen of cows receiving diets I, II and III was similar (77, 74, 39 and 41%, respectively). Replacing barley starch or beet pulp pectin with molasses sucrose in the grass silage-based diet resulted in the higher rate of barley CP, NDF and CE degradation after 8 h of incubation and of CP and CE after 16 h of incubation. It seems that the energy availability from carbohydrates affected the ruminal microbial activity as a consequence of the degradation rate of substrates. Higher (<I>P</I> < 0.01) rumen degradability of CP, NDF and CE after 2, 4, 8, 16 and 24 h of incubation was estimated for 1.0 mm particle size in comparison with that found for grain ground to 5.7 mm particle size, and the degradability of CP after 48 h of incubation was not different (<I>P</I> > 0.05). The degradability of barley grain CP, NDF and CE during incubation time was not influenced by the diet composition by particle size interaction (<I>P</I> > 0.05). The increase in barley grain particle size from 1.0 to 5.7 mm slowed down the rumen digestion of barley DM, CP, NDF and CE, probably due to restricted access to microbial digestion.


2009 ◽  
Vol 54 (No. 6) ◽  
pp. 277-285 ◽  
Author(s):  
A. Asadi Alamouti ◽  
G.R. Ghorbani ◽  
M. Alikhani ◽  
H.R. Rahmani ◽  
A. Teimouri Yansari ◽  
...  

The effects of altering forage particle size and source of rapidly degradable carbohydrates on <I>in situ</I> degradation and ruminal variables were studied in four Iranian male sheep. The study was designed as a Latin square with a 2 × 2 factorial arrangement of treatments including two carbohydrate sources (pelleted beet pulp vs. maize- and barley-based concentrate) and two lucerne particle sizes (2.38 vs. 0.94 mm). Kinetics of disappearance of lucerne, concentrates and mixed samples was studied <I>in situ</I>. Among feed samples, the degradation rate constant of lucerne dry matter was higher (<I>P</I> < 0.02) and disappearance of lucerne neutral detergent fibre (NDF) in 4 h of incubation was lower (<I>P</I> = 0.06) in diets with reduced particle size. The rapidly degradable fraction of lucerne samples was also affected by treatments. Other degradability components were not affected. The mean ruminal pH was lower in diets containing short hay than in those containing long hay (5.76 vs. 5.86, <I>P</I> < 0.006) and pH values were consistently lower immediately after feeding diets with short lucerne hay. The form of carbohydrates did not affect ruminal pH, however, altering the source of carbohydrates changed the pattern of pH over time. Total volatile fatty acid (VFA) concentration and proportions of individual VFA were similar but numerical differences indicated a lower acetate to propionate ratio in diets with short hay. Most of the affected variables were influenced by the particle size of forage to a larger extent than by the source of rapidly degradable carbohydrates or the interaction between them. So, when sheep diets contain no more than 250 g/kg starch, the source of dietary carbohydrates may not interact with forage particle size to affect DM degradability and ruminal fermentation.


Sign in / Sign up

Export Citation Format

Share Document