A computational approach for solving fractional Volterra integral equations based on two dimensional Haar wavelet method

Author(s):  
Zohreh Abdollahi ◽  
M. MohseniMoghadam ◽  
H. Saeedi ◽  
M. J. Ebadi
2020 ◽  
Vol 12 (3) ◽  
pp. 409-415
Author(s):  
Majid Erfanian ◽  
Hamed Zeidabadi ◽  
Rohollah Mehri

In this work, two-dimensional rational Haar wavelet method has been used to solve the twodimensional Volterra integral equations. By using fixed point Banach theorem we achieved the order of convergence and the rate of convergence is O(n(2q)n). Numerical solutions of three examples are presented by applying a simple and efficient computational algorithm.


Author(s):  
Habibollah Saeedi ◽  
Nasibeh Mollahasani ◽  
Mahmoud Moghadam ◽  
Gennady Chuev

An operational Haar wavelet method for solving fractional Volterra integral equationsA Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.


2018 ◽  
Vol 3 (2) ◽  
pp. 447-458 ◽  
Author(s):  
S.C. Shiralashetti ◽  
H. S. Ramane ◽  
R.A. Mundewadi ◽  
R.B. Jummannaver

AbstractIn this paper, a comparative study on Haar wavelet method (HWM) and Hosoya Polynomial method(HPM) for the numerical solution of Fredholm integral equations. Illustrative examples are tested through the error analysis for efficiency. Numerical results are shown in the tables and figures.


Algorithms ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 37
Author(s):  
Amer Darweesh ◽  
Marwan Alquran ◽  
Khawla Aghzawi

In this paper, we present a robust algorithm to solve numerically a family of two-dimensional fractional integro differential equations. The Haar wavelet method is upgraded to include in its construction the Laplace transform step. This modification has proven to reduce the accumulative errors that will be obtained in case of using the regular Haar wavelet technique. Different examples are discussed to serve two goals, the methodology and the accuracy of our new approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hassan A. Zedan ◽  
Eman Alaidarous

We employed the Haar wavelet method to find numerical solution of the system of Fredholm integral equations (SFIEs) and the system of Volterra integral equations (SVIEs). Five test problems, for which the exact solution is known, are considered. Comparison of the results is obtained by the Haar wavelet method with the exact solution.


Sign in / Sign up

Export Citation Format

Share Document