Prevalence of antibiotic-resistant pathogenic bacteria from canal bank soils in and around Kolkata, India

Author(s):  
Lopamudra Roy ◽  
Souvik Roy ◽  
Uma Siddhanta ◽  
Anirban Siddhanta
2021 ◽  
Vol 6 (3) ◽  
pp. 110
Author(s):  
Godfred Saviour Kudjo Azaglo ◽  
Mohammed Khogali ◽  
Katrina Hann ◽  
John Alexis Pwamang ◽  
Emmanuel Appoh ◽  
...  

Inappropriate use of antibiotics has led to the presence of antibiotic-resistant bacteria in ambient air. There is no published information about the presence and resistance profiles of bacteria in ambient air in Ghana. We evaluated the presence and antibiotic resistance profiles of selected bacterial, environmental and meteorological characteristics and airborne bacterial counts in 12 active air quality monitoring sites (seven roadside, two industrial and three residential) in Accra in February 2020. Roadside sites had the highest median temperature, relative humidity, wind speed and PM10 concentrations, and median airborne bacterial counts in roadside sites (115,000 CFU/m3) were higher compared with industrial (35,150 CFU/m3) and residential sites (1210 CFU/m3). Bacillus species were isolated in all samples and none were antibiotic resistant. There were, however, Pseudomonas aeruginosa, Escherichia coli, Pseudomonas species, non-hemolytic Streptococci, Coliforms and Staphylococci species, of which six (50%) showed mono-resistance or multidrug resistance to four antibiotics (penicillin, ampicillin, ciprofloxacin and ceftriaxone). There was a positive correlation between PM10 concentrations and airborne bacterial counts (rs = 0.72), but no correlations were found between PM10 concentrations and the pathogenic bacteria nor their antibiotic resistance. We call for the expansion of surveillance of ambient air to other cities of Ghana to obtain nationally representative information.


2011 ◽  
Vol 1 (1) ◽  
pp. 31-35
Author(s):  
Deepak Dwivedi ◽  
Tejram Kushwah ◽  
Mukesh Kushwah ◽  
Vinod Singh

Antibiotics to treat dental caries infection are routinely prescribed which led to the increased resistance against bacteria. The purpose of this investigation was to perform antibiotic susceptibility tests on a panel of pathogenic bacteria isolated from dental caries infection. Bacteria were isolated from caries site of patients and identified at the species level. Each of 150 species of bacteria was tested for antibiotics susceptibility to a five antibiotics using Etest. The antibiotics used were Amoxicillin, Cloxocillin, Erythromycin, Tetracycline and Penicillin‐V. The obtained resistance percentage for each antibiotic were Penicillin V: 72/150 (48%), Tetracycline: 99/150 (66%), Amoxicillin: 135/150 (90%), Cloxocillin: 117/150 (78%), and Erythromycin: 90/150 (60%) (Table 1). In case of combinatorial antibiotic exposure, the resistance percentage of Penicillin V/Amoxicillin and Amoxicillin/ Erythromycin was 39/150 (26%), and 45/150 (30%) respectively. The study has well demonstrated the clinical picture of antibiotic resistance and susceptibility pattern of bacteria causing dental caries. The obtained comprehensive data will allow investigating the spatial distribution of pathogenic, antibiotic resistant bacteria among dental caries patients which further may help into development of novel diagnostic and treatment approaches for the same.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-4
Author(s):  
Omor Ahmed Chowdhury ◽  
Md Raihan Ahmed ◽  
Md Raihan Dipu ◽  
Md Aftab Uddin

The use of earphones has increased in recent times throughout the world especially among the different level of students such as school, college or university who have a higher tendency of sharing these among them. Unlike airline headsets, headphones and stethoscope ear-pieces, ear phones are often shared by multiple users and can be a potential medium for transmission of pathogens, which can give rise to various ear related infections. The objective of this study was to detect the pathogenic bacteria from the ear-phones used by the students of Stamford University Bangladesh. A total of 16 ear-phone swabs were collected by sterile cotton swabs. The swabs were inoculated onto blood agar and incubated aerobically overnight at 37oC. Microscopic observation and standard biochemical tests were performed to confirm the identification of all the bacterial isolates. Six presumptively identified Staphylococcus spp. (38%) were tested against six different types of antibiotics following Kirby-Bauer disk diffusion method. Isolates were found to be 84% resistant against Cotrimoxazole and demonstrated 100% sensitivity to Vancomycin and Ciprorofloxacin. The findings of this study suggest the users to disinfect their respective ear phones and not to exchange them as they may act as a potential source to transfer pathogenic and antibiotic resistant bacteria among the ear phone users. Stamford Journal of Microbiology, Vol.10 (1) 2020: 1-4


2021 ◽  
Author(s):  
Senjuti Saha ◽  
Chidozie D. Ojobor ◽  
Erik Mackinnon ◽  
Olesia I. North ◽  
Joseph Bondy-Denomy ◽  
...  

ABSTRACTMost Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or non-contractile phage tails known as R-type and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3’-end of the F-type pyocin cluster are divergent in sequence, and likely determine bactericidal specificity. We use sequence similarities among these proteins to define 11 distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly re-assorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins emerged earlier or have been subject to distinct evolutionary pressures. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as anti-bacterial therapeutics.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes a broad spectrum of antibiotic resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great interest in the development of alternative therapeutics. One alternative is protein-based antimicrobials called bacteriocins, which are produced by one strain of bacteria to kill other strains. In this study, we investigate F-type pyocins, bacteriocins naturally produced by P. aeruginosa that resemble non-contractile phage tails. We show that they are potent killers of P. aeruginosa, and distinct pyocin groups display different killing specificities. We have identified the probable specificity determinants of F-type pyocins, which opens up the potential to engineer them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well characterized phage tails will greatly facilitate their development into effective antibacterials.


2021 ◽  
Author(s):  
Mehdi Fatahi-Bafghi ◽  
Sara Naseri ◽  
Ali Alizehi

Abstract Having various clinical applications, probiotic bacteria are currently used in the diet. There are reports of antibiotic resistance genes (ARGs) in these bacteria that can be transferred to other microflora and pathogenic bacteria. The aim of the study is to examine whole-genome sequence analysis in bacteria with probiotic properties. Moreover, this study follows existing issues about the importance and presence of ARGs in these bacteria the dangers of which may affect human health in the years to come. In the present study, 126 complete probiotic bacterial genomes were collected and analysed for ARGs. The results of the study shows there are various antibiotic resistant genes of in these bacteria some of which can be transmitted to other bacteria. We propose microorganisms be applied as a probiotic element in various types of products, antibiogram be conducted for a large number of antibiotics and analysis of complete genome sequence for ARGs prediction.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Sophie Van Hamelsveld ◽  
Muyiwa E Adewale ◽  
Brigitta Kurenbach ◽  
William Godsoe ◽  
Jon S Harding ◽  
...  

Abstract Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7320-7329
Author(s):  
Muhammad Asif ◽  
Fazli Rabbi Awan ◽  
Qaiser Mahmood Khan ◽  
Bongkot Ngamsom ◽  
Nicole Pamme

We investigate paper microfluidic devices for detection of pathogenic bacteria and their sensitivity towards β-lactamase and Extended Spectrum Beta Lactamases (ESBLs) in milk samples to enable appropriate prescription of antibiotics for mastitis.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 871
Author(s):  
Wen-Jie Ng ◽  
Nam-Weng Sit ◽  
Peter Aun-Chuan Ooi ◽  
Kah-Yaw Ee ◽  
Tuck-Meng Lim

Scientific studies about the antibacterial effects of honeydew honey produced by the stingless bee are very limited. In this study, the antibacterial activities of 46 blossom and honeydew honeys produced by both honey bees and stingless bees were evaluated and compared. All bacterial isolates showed varying degrees of susceptibility to blossom and honeydew honeys produced by the honey bee (Apis cerana) and stingless bee (Heterotrigona itama and Geniotrigona thoracica) in agar-well diffusion. All stingless bee honeys managed to inhibit all the isolates but only four out of 23 honey bee honeys achieved that. In comparison with Staphylococcus aureus, Escherichia coli was found to be more susceptible to the antibacterial effects of honey. Bactericidal effects of stingless bee honeys on E. coli were determined with the measurement of endotoxins released due to cell lysis. Based on the outcomes, the greatest antibacterial effects were observed in honeydew honey produced by H. itama. Scanning electron microscopic images revealed the morphological alteration and destruction of E. coli due to the action of this honey. The combination of this honey with antibiotics showed synergistic inhibitory effects on E. coli clinical isolates. This study revealed that honeydew honey produced by H. itama stingless bee has promising antibacterial activity against pathogenic bacteria, including antibiotic resistant strains.


Sign in / Sign up

Export Citation Format

Share Document