New criteria for tool orientation determination in five-axis sculptured surface machining

2011 ◽  
Vol 49 (20) ◽  
pp. 5999-6015 ◽  
Author(s):  
M. Javad Barakchi Fard ◽  
Hsi-Yung Feng
Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In modern product design, sculptured surfaces are commonly used for functional and artistic shape design. Design of sculptured surfaces is evolutionary, consisting primarily of incremental changes to existing part surfaces. Manual operation planning for sculptured surface machining is known to be error-prone and inefficient, which requires considerable checking, verification, and rework. Five-axis machining has higher productivity and better machining quality than 3-axis machining. However, the programming for 5-axis machining is more difficult due to the complex simultaneous cutter movements along the machine’s five axes. This paper presents a systematic methodology to generate operation plans for 5-axis sculptured surface machining. A complete operation plan and the error-free cutter path can be automatically generated from the CAD part design. To achieve design for manufacturing of sculptured surface products, the machining unfeasibility information can be fed back to the designer for further design modification. Results of computer implementation and testing examples are also presented.


Manufacturing ◽  
2002 ◽  
Author(s):  
Cha-Soo Jun ◽  
Yuan-Shin Lee ◽  
Kyungduck Cha

This paper presents a methodology and algorithms of optimizing and smoothing the tool orientation control for 5-axis sculptured surface machining. A searching method in the machining configuration space (C-space) is proposed to find the optimal tool orientation by considering the local gouging, rear gouging and global tool collision in machining. Based on the machined surface error analysis, a boundary search method is developed first to find a set of feasible tool orientations in the C-space to eliminate gouging and collision. By using the minimum cusp height as the objective function, we first determine the locally optimal tool orientation in the C-space to minimize the machined surface error. Considering the adjacent part geometry and the alternative feasible tool orientations in the C-space, tool orientations are then globally optimized and smoothed to minimize the dramatic change of tool orientation during machining. The developed method can be used to automate the planning and programming of tool path generation for high performance 5-axis sculptured surface machining. Computer implementation and examples are also provided in the paper.


Sign in / Sign up

Export Citation Format

Share Document