Effects of amylase and glucoamylase on rehydrated corn ensiled for an extended period: nutritive value, fermentation profile, and amylolytic activity

Author(s):  
Jamille D. O. Batista ◽  
Jefferson R. Gandra ◽  
Tiago A. Del Valle ◽  
Caio S. Takiya ◽  
Rafael H. T. B. de Goes ◽  
...  
Author(s):  
Daniel Augusto Alves Teixeira ◽  
Kátia Aparecida de Pinho Costa ◽  
Wender Ferreira de Souza ◽  
Eduardo da Costa Severiano ◽  
Kátia Cylene Guimarães ◽  
...  

The production of mixed silages is a technique that has emerged as a viable alternative for supplying nutrients during food-shortage periods in the dry season, in addition to guaranteeing the highest ensiled mass production. The aim of this study was to evaluate the fermentation profile and nutritional value of maize silage with Brachiaria species. The experiment was carried out under a completely randomized experimental design with four replications. The treatments comprised the following types of silage: maize; Congo grass; Xaraes palisadegrass; Paiaguas palisadegrass; maize + 30% Congo grass; maize + 30% Xaraes palisadegrass; and maize + 30% Paiaguas palisadegrass. For ensilage, maize and grasses were harvested in a 105-day cycle at a depth of 20 cm from the soil surface. According to the results, the maize silage and mixed silages presented an adequate fermentation profile and improved nutritional value. Among the investigated Brachiaria species, Paiaguas palisadegrass emerged because of its protein increase and low ADF content; therefore, this species is recommended for use in mixed silage production. Thus, mixed silage can be used as an alternative for animal feed supplementation


2017 ◽  
Vol 52 (8) ◽  
pp. 679-689 ◽  
Author(s):  
Poliane Meire Dias de Freitas ◽  
Gleidson Giordano Pinto de Carvalho ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal Araújo ◽  
Juliana Silva de Oliveira ◽  
...  

Abstract: The objective of this work was to evaluate the effects of urea ammoniation of pearl millet silage, at different compaction densities, on chemical composition, losses in the ensilage process, fermentation profile, microbial population count, and aerobic stability. The experimental design was completely randomized, in a 2×4 factorial arrangement, with two compaction densities (600 and 800 kg m-3) and four urea levels (0, 2, 4, and 6% on a dry matter basis), with five replicates. For the aerobic stability assay, the experimental design was completely randomized, in a 2×4 factorial arrangement, with two times (0 and 72 hours) and four urea levels (0, 2, 4, and 6%, on dry matter basis), with five replicates. The urea levels interacted significantly with density as to the contents of organic matter, crude protein, neutral detergent insoluble protein, and as to dry matter recovery; and with exposure hours as to the contents of acid detergent fiber and lignin. Molds and yeasts were not observed in the ammoniated silages. The 800 kg m-3 density reduced losses in the fermentation process of pearl millet silage, and promoted better nutritive value than the compaction at 600 kg m-3. The use of urea does not reduce losses and does not improve the aerobic stability of silages; however, it controls mold growth after silage exposure to air.


2020 ◽  
Vol 41 (1) ◽  
pp. 357
Author(s):  
Tamires Oliveira de Lima ◽  
Adriano de Almeida Lino ◽  
Luis Aurelio Sanches ◽  
Vinícius Martins Brito ◽  
Sabrina Novaes dos Santos-Araujo ◽  
...  

The aim of this study was to evaluate the effect of re-ensiling on the fermentability coefficient (FC), chemical composition and fermentation profile of untreated whole-crop sorghum silage after prolonged periods of environmental exposure. Treatments comprised eight times of exposure to the environment (0, 6, 12, 24, 48, 72, 96, and 120 h) and two procedures for conservation (conventional and re-ensiling) in a completely randomized design with two factors and three replicates. Experimental silos made of 12-L plastic buckets were used in trials. Silage nutritive value, fermentation profile, and dry mass (DM) losses were analyzed before and 90 days after re-ensiling. Regression analyses were performed, and ANOVA was used to compare means. The FC was higher than 45 even when the silage was exposed to air for 120 h before re-ensiling (59.2±2.54). Regression equations were fitted to the data with low accuracy (R2 < 0.47). Moreover, we observed that the main effect occurred between before and after re-ensiling, decreasing the contents of DM (42 to 37 %) and water-soluble carbohydrates (7.0 to 5.8 % DM), neutral detergent fiber (60.4 to 55.4 % DM), and acid detergent fiber (49.5 to 33.5 % DM), but increasing those of lactic acid (0.52 to 0.96 % DM) and ammoniacal nitrogen (1.58 to 2.51 % total N). The DM losses were linear with increasing times of air exposure; however, silage nutritive value and fermentation profile showed no disturbing changes for silage conservation and animal feeding.


2021 ◽  
Vol 11 (17) ◽  
pp. 8257
Author(s):  
Hsiu-Ming Weng ◽  
Li-Chen Kao ◽  
Shu-Min Wang ◽  
Chia-Sheng Chen ◽  
Ting-Yu Lee ◽  
...  

This study investigated the effects of a dual-purpose inoculant (DPI) on the fermentation profile, nutritive value, and aerobic stability of silage. The inoculant effect was first examined with minisilos, and the results were later validated with 400-kg silo bales and a 40-t bunker silo. Briefly, whole-plant corn harvested at the one-half to two-thirds milk line stage was chopped and then treated with or without inoculant containing Lactobacillus plantarum LP1028 and Lactobacillus buchneri LBC1029 at application rates of 2.5 × 105 cfu and 5.0 × 105 cfu per gram of fresh forage, respectively. The results showed that applying DPI had no effect on the nutritive value in all trials. DPI inoculation also slowed yeast and mold growth in silage under aerobic exposure. Inoculation may double the aerobic stability time after 105 d of ensiling (53.25 vs. 113.20 h) in a bunker silo. This study successfully examined the effectiveness of DPI in minisilos, and the results were consistent when moving from the laboratory to the field. Applying DPI made the fermentation more heterolactic without compromising the silage nutritive value, and increasing acetic acid acted as an antifungal agent to inhibit spoilage microbial growth and improve silage aerobic stability.


2020 ◽  
Author(s):  
Rosana Cristina Pereira ◽  
Marcus Flávius Silva Dornas ◽  
Karina Guimarães Ribeiro ◽  
Igor Alexandre Souza ◽  
Mariele Cristina Nascimento Agarussi ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
pp. 309-319
Author(s):  
Ana Paula Maia Dos Santos ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Gleidson Giordano Pinto de Carvalho ◽  
Gherman Garcia Leal de Araújo ◽  
...  

We evaluated the effects of urea addition on gas and effluent losses, fermentation profile, microbial populations, aerobic stability and chemical composition of corn silages. A completely randomised design with five levels of urea (0, 0.5, 1.0, 1.5, and 2.0% based on dry matter) and five replicates was used. A decreasing linear effect of urea levels on effluent losses in corn silages was observed. In parallel, an increasing linear effect of urea levels on pH, increasing from 3.49 to 4.12 in silages without urea in relation to silages with the maximum urea level, was also observed. Urea addition improved the aerobic stability of the silages, with 62 h for the silages without urea and from 90 to >96 h for the silages with urea. Based on the results of the principal components, two groups (I and II) could be distinguished. The most discriminating variables in group I were dry matter (-0.9), pH (-1.2) and lactic acid bacteria (-0.9), while in group II, effluent losses (1.0), ethanol (1.0), acetic acid (0.8) and gas losses (0.8) were most important. The use of urea at inclusion levels of around 2% in corn silage reduced gas losses, improved the nutritive value and promote the aerobic stability of silages. Highlights: The addition of urea in the corn silages increased the pH values from 3.49 (control) to 4.12 (2% of urea DM). The use of urea improved chemical composition of corn silages. The addition of urea reduced the moulds and yeast populations in the corn silages after exposure to air. Urea addition improved the aerobic stability of the corn silages.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


Author(s):  
B.J. Panessa-Warren ◽  
G.T. Tortora ◽  
J.B. Warren

Some bacteria are capable of forming highly resistant spores when environmental conditions are not adequate for growth. Depending on the genus and species of the bacterium, these endospores are resistant in varying degrees to heat, cold, pressure, enzymatic degradation, ionizing radiation, chemical sterilants,physical trauma and organic solvents. The genus Clostridium, responsible for botulism poisoning, tetanus, gas gangrene and diarrhea in man, produces endospores which are highly resistant. Although some sporocides can kill Clostridial spores, the spores require extended contact with a sporocidal agent to achieve spore death. In most clinical situations, this extended period of treatment is not possible nor practical. This investigation examines Clostridium sporogenes endospores by light, transmission and scanning electron microscopy under various dormant and growth conditions, cataloging each stage in the germination and outgrowth process, and analyzing the role played by the exosporial membrane in the attachment and germination of the spore.


2008 ◽  
Vol 18 (2) ◽  
pp. 76-86 ◽  
Author(s):  
Lauren Hofmann ◽  
Joseph Bolton ◽  
Susan Ferry

Abstract At The Children's Hospital of Philadelphia (CHOP) we treat many children requiring tracheostomy tube placement. With potential for a tracheostomy tube to be in place for an extended period of time, these children may be at risk for long-term disruption to normal speech development. As such, speaking valves that restore more normal phonation are often key tools in the effort to restore speech and promote more typical language development in this population. However, successful use of speaking valves is frequently more challenging with infant and pediatric patients than with adult patients. The purpose of this article is to review background information related to speaking valves, the indications for one-way valve use, criteria for candidacy, and the benefits of using speaking valves in the pediatric population. This review will emphasize the importance of interdisciplinary collaboration from the perspectives of speech-language pathology and respiratory therapy. Along with the background information, we will present current practices and a case study to illustrate a safe and systematic approach to speaking valve implementation based upon our experiences.


Sign in / Sign up

Export Citation Format

Share Document