Comparison of GPS-derived ocean tide loading displacements with models in New Zealand

Author(s):  
Zhongguan Liu ◽  
Linguo Yuan ◽  
Kunyan Han ◽  
Zhongshan Jiang ◽  
Changfu Chen
Survey Review ◽  
2010 ◽  
Vol 42 (317) ◽  
pp. 212-228
Author(s):  
P. J. Clarke ◽  
N. T. Penna

2020 ◽  
Vol 47 (15) ◽  
Author(s):  
Chen Yu ◽  
Nigel T. Penna ◽  
Zhenhong Li

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Breili ◽  
R. Hougen ◽  
D. I. Lysaker ◽  
O. C. D. Omang ◽  
B. Tangen

AbstractThe Norwegian Mapping Authority (NMA) has recently established a new gravity laboratory in Ny-Ålesund at Svalbard, Norway. The laboratory consists of three independent pillars and is part of the geodetic core station that is presently under construction at Brandal, approximately 1.5 km north of NMA’s old station. In anticipation of future use of the new gravity laboratory, we present benchmark gravity values, gravity gradients, and final coordinates of all new pillars. Test measurements indicate a higher noise level at Brandal compared to the old station. The increased noise level is attributed to higher sensitivity to wind.We have also investigated possible consequences of moving to Brandal when it comes to the gravitational signal of present-day ice mass changes and ocean tide loading. Plausible models representing ice mass changes at the Svalbard archipelago indicate that the gravitational signal at Brandal may differ from that at the old site with a size detectable with modern gravimeters. Users of gravity data from Ny-Ålesund should, therefore, be cautious if future observations from the new observatory are used to extend the existing gravity record. Due to its lower elevation, Brandal is significantly less sensitive to gravitational ocean tide loading. In the future, Brandal will be the prime site for gravimetry in Ny-Ålesund. This ensures gravity measurements collocated with space geodetic techniques like VLBI, SLR, and GNSS.


2020 ◽  
Vol 12 (18) ◽  
pp. 3080
Author(s):  
Jinglei Zhang ◽  
Xiaoming Wang ◽  
Zishen Li ◽  
Shuhui Li ◽  
Cong Qiu ◽  
...  

Global navigation satellite systems (GNSSs) have become an important tool to derive atmospheric products, such as the total zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) for weather and climate studies. The ocean tide loading (OTL) effect is one of the primary errors that affects the accuracy of GNSS-derived ZTD/PWV, which means the study and choice of the OTL model is an important issue for high-accuracy ZTD estimation. In this study, GNSS data from 1 January 2019 to 31 January 2019 are processed using precise point positioning (PPP) at globally distributed stations. The performance of seven widely used global OTL models is assessed and their impact on the GNSS-derived ZTD is investigated by comparing them against the ZTD calculated from co-located radiosonde observations. The results indicate that the inclusion or exclusion of the OTL effect will lead to a difference in ZTD of up to 3–15 mm for island stations, and up to 1–2 mm for inland stations. The difference of the ZTD determined with different OTL models is quite small, with a root-mean-square (RMS) value below 1.5 mm at most stations. The comparison between the GNSS-derived ZTD and the radiosonde-derived ZTD indicates that the adoption of OTL models can improve the accuracy of GNSS-derived ZTD. The results also indicate that the adoption of a smaller cutoff elevation, e.g., 3° or 7°, can significantly reduce the difference between the ZTDs determined by GNSS and radiosonde, when compared against a 15° cutoff elevation. Compared to the radiosonde-derived ZTD, the RMS error of GNSS-derived ZTD is approximately 25–35 mm at a cutoff elevation of 15°, and 15–25 mm when the cutoff elevation is set to 3°.


Sign in / Sign up

Export Citation Format

Share Document