A technique for rapidly determining Monod and inhibition kinetic parameters in activated sludge is evaluated. The method studied is known as the fed-batch reactor technique and requires approximately three hours to complete. The technique allows for a gradual build-up of substrate in the test reactor by introducing the substrate at a feed rate greater than the maximum substrate utilization rate. Both inhibitory and non-inhibitory substrate responses are modeled using a nonlinear numerical curve-fitting technique. The responses of both glucose and 2,4-dichlorophenol (DCP) are studied using activated sludges with various acclimation histories. Statistically different inhibition constants, KI, for DCP inhibition of glucose utilization were found for the various sludges studied. The curve-fitting algorithm was verified in its ability to accurately retrieve two kinetic parameters from synthetic data generated by superimposing normally distributed random error onto the two parameter numerical solution generated by the algorithm.