A facile one-pot, four-component synthesis of (Z)-isomer of rhodanine-oxindole derivatives under environmentally benevolent conditions

2021 ◽  
pp. 1-10
Author(s):  
F. Matloubi Moghaddam ◽  
Bagher Aghamiri ◽  
Mahbod Jalalinik
Keyword(s):  
2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Author(s):  
Lucien Caspers ◽  
Julian Spils ◽  
Mattis Damrath ◽  
Enno Lork ◽  
Boris Nachtsheim

In this article we describe an efficient approach for the synthesis of cyclic diaryliodonium salts. The method is based on benzyl alcohols as starting materials and consists of an Friedel-Crafts-arylation/oxidation sequence. Besides a deep optimization, particluar focusing on the choice and ratios of the utilized Bronsted-acids and oxidants, we explore the substrate scope of this transformation. We also discuss an interesting isomerism of cyclic iodonium salts substituted with aliphatic substituents at the bridge head carbon. <br>


2020 ◽  
Author(s):  
Dung Do

<p>Chiral molecules with their defined 3-D structures are of paramount importance for the study of chemical biology and drug discovery. Having rich structural diversity and unique stereoisomerism, chiral molecules offer a large chemical space that can be explored for the design of new therapeutic agents.<sup>1</sup> Practically, chiral architectures are usually prepared from organometallic and organocatalytic processes where a transition metal or an organocatalyst is tailor-made for desired reactions. As a result, developing a method that enables rapid assembly of chiral complex molecules under metal- and organocatalyst-free condition represents a daunting challenge. Here we developed a straightforward route to create a chiral 3-D structure from 2-D structures and an amino acid without any chiral catalyst. The center of this research is the design of a <a>special chiral spiroimidazolidinone cyclohexadienone intermediate</a>, a merger of a chiral reactive substrate with multiple nucleophillic/electrophillic sites and a transient organocatalyst. <a>This unique substrate-catalyst (“subcatalyst”) dual role of the intermediate enhances </a><a>the coordinational proximity of the chiral substrate and catalyst</a> in the key Aza-Michael/Michael cascade resulting in a substantial steric discrimination and an excellent overall diastereoselectivity. Whereas the “subcatalyst” (hidden catalyst) is not present in the reaction’s initial components, which renders a chiral catalyst-free process, it is strategically produced to promote sequential self-catalyzed reactions. The success of this methodology will pave the way for many efficient preparations of chiral complex molecules and aid for the quest to create next generation of therapeutic agents.</p>


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


Sign in / Sign up

Export Citation Format

Share Document