Experimental Study on Convection Heat Transfer Enhancement of Channel-Flow with Piezoelectric Fan

2022 ◽  
pp. 1-20
Author(s):  
Janak Tiwari ◽  
Kiyun Kim ◽  
Min Zhang ◽  
Taiho Yeom
1991 ◽  
Vol 113 (1) ◽  
pp. 116-121 ◽  
Author(s):  
H. L. Zhang ◽  
Q. J. Wu ◽  
W. Q. Tao

In this paper, the results of an experimental study of laminar natural convection heat transfer and fluid flow in horizontal annuli between a cylindrical envelope and its inner concentric octagonal heated cylinder are presented. Two octagonal cylinders are investigated: one with a complete surface and the other with two horizontal slots on the top and bottom surfaces. The ratio of the slot width W to H is 0.072. Air is used as the working fluid. The range of Rayleigh number is 2.1×102–1.58×106 for the unslotted case and 1.2×102–1.5×106 for the slotted case. The average heat transfer correlations for the two cases are provided. The results show that the heat transfer intensity of the unslotted octagon is slightly weaker than that in a cylindrical annulus, while for the slotted case, the overall heat transfer enhancement may be as high as 74 percent. The smoke technique is used to visualize the flow patterns. A series of photographs of the flow patterns are provided, which enhances our understanding of the mechanism of heat transfer enhancement for the slotted octagonal case.


2019 ◽  
Vol 29 (10) ◽  
pp. 3822-3856 ◽  
Author(s):  
Nirmal Kumar Manna ◽  
Nirmalendu Biswas ◽  
Pallab Sinha Mahapatra

Purpose This study aims to enhance natural convection heat transfer for a porous thermal cavity. Multi-frequency sinusoidal heating is applied at the bottom of a porous square cavity, considering top wall adiabatic and cooling through the sidewalls. The different frequencies, amplitudes and phase angles of sinusoidal heating are investigated to understand their major impacts on the heat transfer characteristics. Design/methodology/approach The finite volume method is used to solve the governing equations in a two-dimensional cavity, considering incompressible laminar flow, Boussinesq approximation and Brinkman–Forchheimer–Darcy model. The mean-temperature constraint is applied for enhancement analysis. Findings The multi-frequency heating can markedly enhance natural convection heat transfer even in the presence of porous medium (enhancement up to ∼74 per cent). Only the positive phase angle offers heat transfer enhancement consistently in all frequencies (studied). Research limitations/implications The present research idea can usefully be extended to other multi-physical areas (nanofluids, magneto-hydrodynamics, etc.). Practical implications The findings are useful for devices working on natural convection. Originality/value The enhancement using multi-frequency heating is estimated under different parametric conditions. The effect of different frequencies of sinusoidal heating, along with the uniform heating, is collectively discussed from the fundamental point of view using the average and local Nusselt number, thermal and hydrodynamic boundary layers and heatlines.


Author(s):  
Emad Y. Tanbour ◽  
Ramin K. Rahmani

Enhancement of the natural and forced convection heat transfer has been the subject of numerous academic and industrial studies. Air blenders, mechanical agitators, and static mixers have been developed to increase the forced convection heat transfer rate in compressible and incompressible flows. Stationary inserts can be efficiently employed as heat transfer enhancement devices in the natural convection systems. Generally, a stationary heat transfer enhancement insert consists of a number of equal motionless segments, placed inside of a pipe in order to control flowing fluid streams. These devices have low maintenance and operating costs, low space requirements and no moving parts. A range of designs exists for a wide range of specific applications. The shape of the elements determines the character of the fluid motion and thus determines thermal effectiveness of the insert. There are several key parameters that may be considered in the design procedure of a heat transfer enhancement insert, which lead to significant differences in the performance of various designs. An ideal insert, for natural conventional heat transfer in compressible flow applications, provides a higher rate of heat transfer and a thermally homogenous fluid with minimized pressure drop and required space. To choose an insert for a given application or in order to design a new insert, besides experimentation, it is possible to use Computational Fluid Dynamics to study the insert performance. This paper presents the outcomes of the numerical studies on industrial stationary heat transfer enhancement inserts and illustrates how a heat transfer enhancement insert can improve the heat transfer in buoyancy driven compressible flows. Using different measuring tools, thermal performance of two different inserts (twisted and helix) are studied. It is shown that the helix design leads to a higher rate of heat transfer, while causes a lower pressure drop in the flowfield, suggesting the insert effectiveness is higher for the helix design, compared to a twisted plate.


Sign in / Sign up

Export Citation Format

Share Document