Dopaminergic neuronal death in the substantia nigra associates with change in serum levels of TNF-α and IL-1β; evidence from early experimental model of Parkinson’s disease

2022 ◽  
pp. 1-10
Author(s):  
Hossein Piri ◽  
Sahar Sharifi ◽  
Sepideh Nigjeh ◽  
Hashem Haghdoost-Yazdi
2021 ◽  
Vol 18 (4) ◽  
pp. 767-772
Author(s):  
Zhaowen Zhang ◽  
Sisi Wang ◽  
Chengyan Li

Purpose: To examine the effect of n-3 polyunsaturated fatty acids (PUFAs) on dopaminergic neurons in substantia nigra, intracerebral inflammatory response and ethology in mice with Parkinson’s disease (PD). Methods: Four groups of male C57BL/6 mice (n = 48) were used: normal control, negative control, n3PUFA, and Madopa groups. Except for normal control group, all groups were given 6- hydroxydopamine hydrochloride (6-OHDA) to establish Parkinson’s mice model. The expressions of tyrosine hydroxylase (TH) and calcium-binding protein (CB) in substantia nigra dopaminergic neurons were determined with immunohistochemistry and Western blot. The contents of nitric oxide (NO), tumor necrosis factor (TNF-α) and interferon γ (IFN-γ) (indices of intracerebral inflammatory response) were measured. Tremor paralysis, moving grid number, standing times, swimming ability, and the number of rollers in each group were observed as indices of ethology. Results: The number of TH and CB-positive neurons in the substantia nigra of n-3PUFA-treated mice was significantly increased, relative to those in Madopa-treated mice (p < 0.05). The expressions of TH and CB proteins in substantia nigra in n-3PUFA group were markedly higher than the corresponding expressions in Madopa-treated mice (p < 0.05). Decreased levels of NO, TNF-α and IFN-γ levels were seen in 3PUFA group, when compared to mice in Madopa group, but higher behavioral scores were obtained in n-3PUFA-treated mice, relative to Madopa-treated mice (p < 0.05). Conclusion: The n-3PUFAs protect substantia nigra compact dopaminergic neurons against Parkinson’s disease, alleviate immune inflammation, and improve the coordination of limb movement. Thus, n-3PUFAs have potential therapeutic application in the management of Parkinson’s disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Claudia Luna-Herrera ◽  
Irma A. Martínez-Dávila ◽  
Luis O. Soto-Rojas ◽  
Yazmin M. Flores-Martinez ◽  
Manuel A. Fernandez-Parrilla ◽  
...  

Chronic consumption of β-sitosterol-β-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson’s disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 μg BSSG/1 μL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100β, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1β, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1β was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia ( 899.0 ± 80.20 % ) and reactive astrocytes ( 651.50 ± 11.28 % ) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8 % (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100β immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8 % reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson’s disease in BSSG intoxication.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Ming-Wei Lin ◽  
Chi Chien Lin ◽  
Yi-Hung Chen ◽  
Han-Bin Yang ◽  
Shih-Ya Hung

Parkinson’s disease (PD) is a neurodegenerative disease, which is associated with mitochondrial dysfunction and abnormal protein accumulation. No treatment can stop or slow PD. Autophagy inhibits neuronal death by removing damaged mitochondria and abnormal protein aggregations. Celastrol is a triterpene with antioxidant and anti-inflammatory effects. Up until now, no reports have shown that celastrol improves PD motor symptoms. In this study, we used PD cell and mouse models to evaluate the therapeutic efficacy and mechanism of celastrol. In the substantia nigra, we found lower levels of autophagic activity in patients with sporadic PD as compared to healthy controls. In neurons, celastrol enhances autophagy, autophagosome biogenesis (Beclin 1↑, Ambra1↑, Vps34↑, Atg7↑, Atg12↑, and LC3-II↑), and mitophagy (PINK1↑, DJ-1↑, and LRRK2↓), and these might be associated with MPAK signaling pathways. In the PD cell model, celastrol reduces MPP+-induced dopaminergic neuronal death, mitochondrial membrane depolarization, and ATP reduction. In the PD mouse model, celastrol suppresses motor symptoms and neurodegeneration in the substantia nigra and striatum and enhances mitophagy (PINK1↑ and DJ-1↑) in the striatum. Using MPP+ to induce mitochondrial damage in neurons, we found celastrol controls mitochondrial quality by sequestering impaired mitochondria into autophagosomes for degradation. This is the first report to show that celastrol exerts neuroprotection in PD by activating mitophagy to degrade impaired mitochondria and further inhibit dopaminergic neuronal apoptosis. Celastrol may help to prevent and treat PD.


2019 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Areum Jo ◽  
Yunjong Lee ◽  
Chi-Hu Park ◽  
Joo-Ho Shin

The inactivation of parkin by mutation or post-translational modification contributes to dopaminergic neuronal death in Parkinson’s disease (PD). The substrates of parkin, FBP1 and AIMP2, are accumulated in the postmortem brains of PD patients, and it was recently suggested that these parkin substrates transcriptionally activate deubiquitinase USP29. Herein, we newly identified 160 kDa myb-binding protein (MYBBP1A) as a novel substrate of USP29. Knockdown of parkin increased the level of AIMP2, leading to ultimately USP29 and MYBBP1A accumulation in SH-SY5Y cells. Notably, MYBBP1A was downregulated in the ventral midbrain (VM) of Aimp2 knockdown mice, whereas the upregulation of MYBBP1A was observed in the VM of inducible AIMP2 transgenic mice, as well as in the substantia nigra of sporadic PD patients. These results suggest that AIMP2 upregulates USP29 and MYBBP1A in the absence of parkin activity, contributing to PD pathogenesis.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
C Funke ◽  
A Soehn ◽  
C Schulte ◽  
M Bonin ◽  
C Klein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document