An FPGA-based design for power efficient low delay rate adaptive pacemaker using accelerometer and heart rate sensor

Author(s):  
Rohini Srivastava ◽  
Ch Kalyan Kumar Prusty ◽  
Nitin Sahai ◽  
Ravi Prakash Tewari ◽  
Basant Kumar
Author(s):  
Antti Vehkaoja ◽  
Timo Salpavaara ◽  
Jarmo Verho ◽  
Jukka Lekkala
Keyword(s):  

Author(s):  
Zhouchen Ma ◽  
Cheng Chen ◽  
Min Wang ◽  
Yang Zhao ◽  
Liang Ying ◽  
...  
Keyword(s):  

Author(s):  
Yibo Zhu ◽  
Rasik R Jankay ◽  
Laura C Pieratt ◽  
Ranjana K. Mehta

Extensive research has been conducted to study the effects of physical and sleep related fatigue on occupational health and safety. However, fatigue is a complex multidimensional construct, that is task- and occupation-dependent, and our knowledge on how to measure this complex construct is limited. A scoping review was conducted to: 1) review sensors and their metrics currently employed in occupational fatigue studies, 2) identify overlap between sensors and associated metrics that can be leveraged to assess comprehensive fatigue, 3) investigating the effectiveness of the sensors/metrics, and 4) recommended potential sensor/metric combinations to evaluate comprehensive fatigue. 512 unique abstracts were identified through Ovid-MEDLINE, MEDLINE, Embase and Cinal databases and application of the inclusion/exclusion criteria resulted in 27 articles that were included for the review. Heart rate sensors and actigraphs were identified to be the most suitable devices to study comprehensive fatigue. Heart rate trend within the heart rate sensor, and sleep length and sleep efficiency within actigraphs were found to be the most popular and reliable metrics for measuring occupational fatigue.


2010 ◽  
Vol 68 ◽  
pp. 480-480
Author(s):  
C Ward ◽  
J Teoh ◽  
M Grubb ◽  
J Crowe ◽  
B Hayes-Gill ◽  
...  

1994 ◽  
Vol 127 (4) ◽  
pp. 1026-1030 ◽  
Author(s):  
Thorsten Lewalter ◽  
Werner Jung ◽  
Dean MacCarter ◽  
Torsten Bauer ◽  
Rainer Schimpf ◽  
...  

2021 ◽  
Vol 2111 (1) ◽  
pp. 012026
Author(s):  
Muhammad Irmansyah ◽  
Efrizon ◽  
Anggara Nasution ◽  
Era Madona

Abstract The aim of this research was applied a microcontroller, temperature sensor, weight sensor, heart rate sensor and GSM module to monitoring and notification of the condition of premature babies in portable incubators. The hardware used consists of a DS18B20 sensor, Load Cell, Pulse Heart Rate Sensor, Buzzer, LCD and SIM800L Module. The results showed the Pulse sensor and DS18B20 sensor could measure and detect the baby’s heart rate and baby temperature. The result was on the LCD with an average error of 4.354% for heartrate and 1.437% for temperature. The loadcell sensor can detect weight with an error of 2.16%. The duration of sending SMS to Smartphone is 8s for each delivery. SMS was sent if the baby weak and critical condition.


Author(s):  
Junichiro Hayano ◽  
Emi Yuda

The prediction of the menstrual cycle phase and fertility window by easily measurable bio-signals is an unmet need and such technological development will greatly contribute to women's QoL. Although many studies have reported differences in autonomic indices of heart rate variability (HRV) between follicular and luteal phases, they have not yet reached the level that can predict the menstrual cycle phases. The recent development of wearable sensors-enabled heart rate monitoring during daily life. The long-term heart rate data obtained by them carry plenty of information, and the information that can be extracted by conventional HRV analysis is only a limited part of it. This chapter introduces comprehensive analyses of long-term heart rate data that may be useful for revealing their associations with the menstrual cycle phase.


Sign in / Sign up

Export Citation Format

Share Document