Fleming, James Rodger, First Woman: Joanne Simpson and the Tropical Atmosphere

2021 ◽  
Vol 49 (6) ◽  
pp. 137-138
Author(s):  
Joseph Giacomelli
Keyword(s):  
Author(s):  
Juan A. Jaén ◽  
Kevin Guzmán ◽  
Josefina Iglesias ◽  
Griselda Caballero Manrique

Author(s):  
M. I. Daskovsky ◽  
◽  
E. A. Shein ◽  
D. V. Sevastyanov ◽  
M. S. Doriomedov ◽  
...  
Keyword(s):  

2018 ◽  
Vol 75 (10) ◽  
pp. 3313-3330 ◽  
Author(s):  
Hauke Schulz ◽  
Bjorn Stevens

Measurements from the Barbados Cloud Observatory are analyzed to identify the processes influencing the distribution of moist static energy and the large-scale organization of tropical convection. Five years of water vapor and cloud profiles from a Raman lidar and cloud radar are composed to construct the structure of the observed atmosphere in moisture space. The large-scale structure of the atmosphere is similar to that now familiar from idealized studies of convective self-aggregation, with shallow clouds prevailing over a moist marine layer in regions of low-rank humidity, and deep convection in a nearly saturated atmosphere in regions of high-rank humidity. With supplementary reanalysis datasets the overall circulation pattern is reconstructed in moisture space, and shows evidence of a substantial lower-tropospheric component to the circulation. This shallow component of the circulation helps support the differentiation between the moist and dry columns, similar to what is found in simulations of convective self-aggregation. Radiative calculations show that clear-sky radiative differences can explain a substantial part of this circulation, with further contributions expected from cloud radiative effects. The shallow component appears to be important for maintaining the low gross moist stability of the convecting column. A positive feedback between a shallow circulation driven by differential radiative cooling and the low-level moisture gradients that help support it is hypothesized to play an important role in conditioning the atmosphere for deep convection. The analysis suggests that the radiatively driven shallow circulations identified by modeling studies as contributing to the self-aggregation of convection in radiative–convective equilibrium similarly play a role in shaping the intertropical convergence zone and, hence, the large-scale structure of the tropical atmosphere.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Caroline Muller ◽  
Da Yang ◽  
George Craig ◽  
Timothy Cronin ◽  
Benjamin Fildier ◽  
...  

Idealized simulations of the tropical atmosphere have predicted that clouds can spontaneously clump together in space, despite perfectly homogeneous settings. This phenomenon has been called self-aggregation, and it results in a state where a moist cloudy region with intense deep convective storms is surrounded by extremely dry subsiding air devoid of deep clouds. We review here the main findings from theoretical work and idealized models of this phenomenon, highlighting the physical processes believed to play a key role in convective self-aggregation. We also review the growing literature on the importance and implications of this phenomenon for the tropical atmosphere, notably, for the hydrological cycle and for precipitation extremes, in our current and in a warming climate. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document