Phase-type gbatings induced by electro-optic effect of the space charge fluctuation in an ionic conductor

1983 ◽  
Vol 44 (12) ◽  
pp. 361-366 ◽  
Author(s):  
Shi-Jie Gu ◽  
Pin-Yuan Li
2020 ◽  
Vol 10 (8) ◽  
pp. 2915 ◽  
Author(s):  
Yingchao Cui ◽  
Hongxia Yin ◽  
Zhaoliang Xing ◽  
Xiangjin Guo ◽  
Shiyi Zhao ◽  
...  

The positive temperature coefficient (PTC) effect of the semiconductive layers of high-voltage direct current (HVDC) cables is a key factor limiting its usage when the temperature exceeds 70 °C. The conductivity of the ionic conductor increases with the increase in temperature. Based on the characteristics of the ionic conductor, the PTC effect of the composite can be weakened by doping the ionic conductor into the semiconductive materials. Thus, in this paper, the PCT effects of electrical resistivity in perovskite La0.6Sr0.4CoO3 (LSC) particle-dispersed semiconductive composites are discussed based on experimental results from scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a semiconductive resistance test device. Semiconductive composites with different LSC contents of 0.5 wt%, 1 wt%, 3 wt%, and 5 wt% were prepared by hot pressing crosslinking. The results show that the PTC effect is weakened due to the addition of LSC. At the same time, the injection of space charge in the insulating sample is characterized by the pulsed electroacoustic method (PEA) and the thermally stimulated current method (TSC), and the results show that when the content of LSC is 1 wt%, the injection of space charge in the insulating layer can be significantly reduced.


1983 ◽  
Vol 24 ◽  
Author(s):  
J. Bruce Wagner

ABSTRACTThe introduction of a dispersion of small (≃ 1μ1m) insulating particles into an ionic conductor results in an increase in the ionic conductivity. This behavior is not in accord with classical theory. A number of different examples such as a dispersion of a metallic conductor in a semiconductor, a dispersion of an insulator in a semicondutor, and a dispersion of a metallic conductor in an ionic conductor all yield unusual transport behaviors when the surface area to volume ratio of the dispersoid is large. Under such conditions, a space charge layer or double layer adjacent to the dispersoid must be considered. Practical applications such as solid electrolytes, electrodes, corrosion systems and geological systems were discussed.


Sign in / Sign up

Export Citation Format

Share Document