Current Use and Limitations of Cultured High-grade Meningioma Cells in Neuro-Oncological Research – In response to: “Caution Using Meningioma Cell Lines as Tumor Models”

2021 ◽  
pp. 1-2
Author(s):  
Jaime L. Martinez Santos ◽  
Paola Suarez-Meade ◽  
David Cachia ◽  
Scott M. Lindhorst ◽  
Arabinda Das
2018 ◽  
Author(s):  
Sharon K. Michelhaugh ◽  
Sam Kiousis ◽  
Sam A. Michelhaugh ◽  
Neil V. Klinger ◽  
Sandeep Mittal

2020 ◽  
pp. 1-10
Author(s):  
Louise Stögbauer ◽  
Christian Thomas ◽  
Andrea Wagner ◽  
Nils Warneke ◽  
Eva Christine Bunk ◽  
...  

OBJECTIVEChemotherapeutic options for meningiomas refractory to surgery or irradiation are largely unknown. Human telomerase reverse transcriptase (hTERT) promoter methylation with subsequent TERT expression and telomerase activity, key features in oncogenesis, are found in most high-grade meningiomas. Therefore, the authors investigated the impact of the demethylating agent decitabine (5-aza-2ʹ-deoxycytidine) on survival and DNA methylation in meningioma cells.METHODShTERT promoter methylation, telomerase activity, TERT expression, and cell viability and proliferation were investigated prior to and after incubation with decitabine in two benign (HBL-52 and Ben-Men 1) and one malignant (IOMM-Lee) meningioma cell line. The global effects of decitabine on DNA methylation were additionally explored with DNA methylation profiling.RESULTSHigh levels of TERT expression, telomerase activity, and hTERT promoter methylation were found in IOMM-Lee and Ben-Men 1 but not in HBL-52 cells. Decitabine induced a dose-dependent significant decrease of proliferation and viability after incubation with doses from 1 to 10 μM in IOMM-Lee but not in HBL-52 or Ben-Men 1 cells. However, effects in IOMM-Lee cells were not related to TERT expression, telomerase activity, or hTERT promoter methylation. Genome-wide methylation analyses revealed distinct demethylation of 14 DNA regions after drug administration in the decitabine-sensitive IOMM-Lee but not in the decitabine-resistant HBL-52 cells. Differentially methylated regions covered promoter regions of 11 genes, including several oncogenes and tumor suppressor genes that to the authors’ knowledge have not yet been described in meningiomas.CONCLUSIONSDecitabine decreases proliferation and viability in high-grade but not in benign meningioma cell lines. The effects of decitabine are TERT independent but related to DNA methylation changes of promoters of distinct tumor suppressor genes and oncogenes.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 492 ◽  
Author(s):  
Weder Pereira de Menezes ◽  
Viviane Aline Oliveira Silva ◽  
Izabela Natália Faria Gomes ◽  
Marcela Nunes Rosa ◽  
Maria Luisa Corcoll Spina ◽  
...  

The 5’-methylthioadenosine phosphorylase (MTAP) gene is located in the chromosomal region 9p21. MTAP deletion is a frequent event in a wide variety of human cancers; however, its biological role in tumorigenesis remains unclear. The purpose of this study was to characterize the MTAP expression profile in a series of gliomas and to associate it with patients’ clinicopathological features. Moreover, we sought to evaluate, through glioma gene-edited cell lines, the biological impact of MTAP in gliomas. MTAP expression was evaluated in 507 glioma patients by immunohistochemistry (IHC), and the expression levels were associated with patients’ clinicopathological features. Furthermore, an in silico study was undertaken using genomic databases totalizing 350 samples. In glioma cell lines, MTAP was edited, and following MTAP overexpression and knockout (KO), a transcriptome analysis was performed by NanoString Pan-Cancer Pathways panel. Moreover, MTAP’s role in glioma cell proliferation, migration, and invasion was evaluated. Homozygous deletion of 9p21 locus was associated with a reduction of MTAP mRNA expression in the TCGA (The Cancer Genome Atlas) - glioblastoma dataset (p < 0.01). In addition, the loss of MTAP expression was markedly high in high-grade gliomas (46.6% of cases) determined by IHC and Western blotting (40% of evaluated cell lines). Reduced MTAP expression was associated with a better prognostic in the adult glioblastoma dataset (p < 0.001). Nine genes associated with five pathways were differentially expressed in MTAP-knockout (KO) cells, with six upregulated and three downregulated in MTAP. Analysis of cell proliferation, migration, and invasion did not show any significant differences between MTAP gene-edited and control cells. Our results integrating data from patients as well as in silico and in vitro models provide evidence towards the lack of strong biological importance of MTAP in gliomas. Despite the frequent loss of MTAP, it seems not to have a clinical impact in survival and does not act as a canonic tumor suppressor gene in gliomas.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii101-ii101
Author(s):  
Christoph Kesseler ◽  
Julian Kahr ◽  
Natalie Waldt ◽  
Nele Stroscher ◽  
Josephine Liebig ◽  
...  

Abstract PURPOSE To evaluate the role of the small GTPases RhoA, Rac1 and Cdc42 in meningiomas as therapeutic targets and their interactions in meningiomas. EXPERIMENTAL DESIGN We analyzed expression of GTPases in human meningioma samples and meningioma cell lines of various WHO grades. Malignant IOMM-Lee meningioma cells were used to generate shRNA mediated knockdowns of GTPases RhoA, Rac1 or Cdc42 and to study knockdown effects on proliferation and migration, as well as analysis of cell morphology by confocal microscopy. The same tests were used to investigate effects of the two inhibitors Fasudil and EHT-1864 of malignant IOMM-Lee, KT21 and benign Ben-Men cells and the effects of these drugs on IOMM-Lee knockdown cells. The effects of GTPase knockdowns and Fasudil treatment were studied in terms of overall survival by intracranial xenografts of mice. Potential interactions of GTPases regarding NF2, mTOR and FAK-Paxillin were examined. RESULTS Small GTPases were upregulated in meningiomas of higher tumor grades. Reduced proliferation and migration could be achieved by GTPase knockdown in IOMM-Lee cells. Additionally, the ROCK-inhibitor Fasudil and Rac1-inhibitor EHT-1864 reduced proliferation in different meningioma cell lines and reduced proliferation and migration independent of GTPase knockdowns/status. Moreover, overall survival in vivo could also be increased by knockdowns of RhoA and Rac1 as well as Fasudil treatment. GTPase expression was affected dependent on the NF2 status but effects were not very distinct, indicating that NF2 is not strongly involved in GTPase regulation in meningiomas. In terms of mTOR and FAK-Paxillin signaling, each GTPase changes those pathways in a different manner. CONCLUSION Small GTPases are important effectors in meningioma proliferation and migration in vitro as well as survival in vivo and their inhibition should be considered as potential treatment option.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Erik White ◽  
Jesus Romero ◽  
Michael Prabhu ◽  
Samantha Beck ◽  
Vikram Prabhu ◽  
...  

2018 ◽  
Vol 60 (4) ◽  
pp. 1043-1052
Author(s):  
Marie-Sophie Dheur ◽  
Hélène A. Poirel ◽  
Geneviève Ameye ◽  
Gaëlle Tilman ◽  
Pascale Saussoy ◽  
...  

Author(s):  
Peter John ◽  
Natalie Waldt ◽  
Josephine Liebich ◽  
Christoph Kesseler ◽  
Stefan Schnabel ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 471-479
Author(s):  
Michael L. Stromyer ◽  
David J. Weader ◽  
Uttam Satyal ◽  
Philip H. Abbosh ◽  
Wiley J. Youngs

BACKGROUND: Bladder cancer is one of the most common types of cancer diagnosed each year, and more than half of patients have non-muscle invasive bladder cancer (NMIBC). The standard of care for patients with high-grade NMIBC is Bacillus Calmette-Guerin (BCG). Unfortunately, multiple BCG shortages have limited access to this treatment. Available alternatives using intravesical administration of chemotherapy have some efficacy, but lack prospective validation and long-term outcomes. Development of novel intravesical therapies may provide more active alternatives to BCG for patients with high-grade NMIBC. OBJECTIVE: To develop an optimal imidazolium salt for the intravesical treatment of NMIBC and determine preliminary in vitro activity of anthraquinone-substituted imidazolium salts. METHODS: The development of the anthraquinone-substituted imidazolium salts was undertaken in an attempt to increase the potency of this class of compounds by incorporating the quinone functional group observed in the chemotherapeutics doxorubicin, valrubicin, and mitomycin. All compounds were characterized by 1H and 13C NMR spectroscopy and infrared spectroscopy. Furthermore, these imidazolium salts were tested for in vitro cytotoxicity by the Developmental Therapeutics Program (DTP) on the NCI-60 human tumor cell line screening. Additional in vitro testing was performed against diverse bladder cancer cell lines (RT112, TCCSUP, J82, and UMUC13) using CellTiter-Glo® assays and colony-forming assays. RESULTS: The NCI-60 cell line screening indicated that compound 7 had the highest activity and was concluded to be the optimal compound for further study. Using CellTiter-Glo® assays on bladder cancer cell lines, 50% growth inhibitory concentration (IC50) values were determined to range from 32–50μM after an exposure of 1 h, for compound 7. Further evaluation of the compound by colony-forming assays showed the complete inhibition of growth at 10 days post a 100μM dose of compound 7 for 1 h. CONCLUSIONS: The most active lipophilic anthraquinone imidazolium salt, compound 7, could be a viable treatment for non-muscle invasive bladder cancer as it exhibits a cell-killing effect at a 1 h time period and completely inhibits cancer regrowth in colony-forming assays.


2015 ◽  
Vol 11 (6) ◽  
pp. 1612-1621 ◽  
Author(s):  
Roberta Leone ◽  
Paola Giussani ◽  
Sara De Palma ◽  
Chiara Fania ◽  
Daniele Capitanio ◽  
...  

NO exposure of two human high grade glioma cell lines (CCF-STTG1 and T98G) characterized by a different proteomic profile shows differential ceramide distribution and proliferation.


Sign in / Sign up

Export Citation Format

Share Document