Catechin regulates miR-182/GGPPS1 signaling pathway and inhibits LPS-induced acute lung injury in mice

Author(s):  
Yong Zhao ◽  
Hao Zheng ◽  
Shengnan Yang ◽  
Xiaoqing Zhang ◽  
Weigang Dong ◽  
...  
2019 ◽  
Vol 18 (2) ◽  
pp. 176-182
Author(s):  
Chen Weiyan ◽  
Deng Wujian ◽  
Chen Songwei

Acute lung injury is a clinical syndrome consisting of a wide range of acute hypoxemic respiratory failure disorders. Sepsis is a serious complication caused by an excessive immune response to pathogen-induced infections, which has become a major predisposing factor for acute lung injury. Taxifolin is a natural flavonoid that shows diverse therapeutic benefits in inflammation- and oxidative stress-related diseases. In this study, we investigated the role of taxifolin in a mouse model of cecal ligation and puncture-induced sepsis. Cecal ligation and puncture-operated mice presented damaged alveolar structures, thickened alveolar walls, edematous septa, and hemorrhage compared to sham-treated controls. Cecal ligation and puncture mice also showed increased wet-to-dry (W/D) lung weight ratio and elevated total protein concentration and lactate dehydrogenase level in bronchoalveolar lavage fluid. Taxifolin treatment protected animals against sepsis-induced pulmonary damage and edema. Septic mice presented compromised antioxidant capacity, whereas the administration of taxifolin prior to cecal ligation and puncture surgery decreased malondialdehyde concentration and enhanced the levels of reduced glutathione and superoxide dismutase in mice with sepsis-induced acute lung injury. Moreover, cecal ligation and puncture-operated mice showed markedly higher levels of proinflammatory cytokines relative to sham-operated group, while taxifolin treatment effectively mitigated sepsis-induced inflammation in mouse lungs. Further investigation revealed that taxifolin suppressed the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in cecal ligation and puncture-challenged mice by regulating the phosphorylation of p65 and IκBα. In conclusion, our study showed that taxifolin alleviated sepsis-induced acute lung injury via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, suggesting the therapeutic potential of taxifolin in the treatment sepsis-induced acute lung injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mian Wang ◽  
Hua Zhong ◽  
Xian Zhang ◽  
Xin Huang ◽  
Jing Wang ◽  
...  

AbstractAcute lung injury (ALI), which could be induced by multiple factors such as lipopolysaccharide (LPS), refer to clinical symptoms of acute respiratory failure, commonly with high morbidity and mortality. Reportedly, active ingredients from green tea have anti-inflammatory and anticancer properties, including epigallocatechin-3-gallate (EGCG). In the present study, protein kinase C alpha (PRKCA) is involved in EGCG protection against LPS-induced inflammation and ALI. EGCG treatment attenuated LPS-stimulated ALI in mice as manifested as improved lung injury scores, decreased total cell amounts, neutrophil amounts and macrophage amounts, inhibited the activity of MPO, decreased wet-to-dry weight ratio of lung tissues, and inhibited release of inflammatory cytokines TNF-α, IL-1β, and IL-6. PRKCA mRNA and protein expression showed to be dramatically decreased by LPS treatment while reversed by EGCG treatment. Within LPS-stimulated ALI mice, PRKCA silencing further aggravated, while PRKCA overexpression attenuated LPS-stimulated inflammation and ALI through MAPK signaling pathway. PRKCA silencing attenuated EGCG protection. Within LPS-induced RAW 264.7 macrophages, EGCG could induce PRKCA expression. Single EGCG treatment or Lv-PRKCA infection attenuated LPS-induced increases in inflammatory factors; PRKCA silencing could reverse the suppressive effects of EGCG upon LPS-stimulated inflammatory factor release. In conclusion, EGCG pretreatment inhibits LPS-induced ALI in mice. The protective mechanism might be associated with the inhibitory effects of PRKCA on proinflammatory cytokine release via macrophages and MAPK signaling pathway.


2020 ◽  
Author(s):  
Xue-wei Pan ◽  
Li-xuan Xue ◽  
Qian-liu Zhou ◽  
Jia-zhi Zhang ◽  
Yu-jie Dai ◽  
...  

Abstract Background: Sepsis is a severe disorder leading to a clinically critical syndrome of multiple organ dysfunction syndrome. Most patients with sepsis will be associated with acute lung injury (ALI), which is an independent risk factors of organ failure and death in patients with sepsis at the same time. YiQiFuMai Lyophilized Injection (YQFM) is a modern traditional Chinese prescription preparation, which could ameliorate ALI induced by lipopolysaccharide (LPS) or fine particulate matter. The current study aimed to investigate the effect of YQFM on sepsis-induced ALI and the underlying mechanism.Methods: Male C57BL/6J mice were treated with cecal ligation and puncture (CLP) after tail intravenous injected with YQFM (1, 2 and 4 g/kg). The measurements of lung edema, evans blue leakage, myeloperoxidase content, inflammatory cells in bronchoalveolar lavage fluid, histopathological assay and expression of associated proteins were performed at 18 h after CLP.Results: The results illustrated that YQFM inhibited pulmonary edema and inflammatory response, thus ameliorated ALI in sepsis mice. Furthermore, the expression of TLR4 and phosphorylated Src was down-regulated, and the expression of p120-catenin and VE-cadherin was restored by YQFM administration.Conclusion: Our study suggested the therapeutic potential of YQFM on treating sepsis-induced ALI via regulating TLR4/Src/VE-cadherin/p120-catenin signaling pathway.


2020 ◽  
Vol 83 ◽  
pp. 106444
Author(s):  
Il-Gyu Ko ◽  
Jae Joon Hwang ◽  
Bok Soon Chang ◽  
Sang-Hoon Kim ◽  
Jun-Jang Jin ◽  
...  

2019 ◽  
Vol 42 (12) ◽  
pp. 1063-1070 ◽  
Author(s):  
Naigang Wang ◽  
Cuiping Geng ◽  
Haiyun Sun ◽  
Xia Wang ◽  
Fangmin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document