Effect of hydraulic parameters of leachate treatment process on di(2-ethylhexyl) phthalate removal from aged leachate

2022 ◽  
pp. 1-27
Author(s):  
Pingping Sun ◽  
Hongzhi Mao ◽  
Chengran Fang ◽  
Yuyang Long
RSC Advances ◽  
2019 ◽  
Vol 9 (66) ◽  
pp. 38807-38813
Author(s):  
Chengran Fang ◽  
Hongzhi Mao ◽  
Yuyang Long

The removal of di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) with dissolved organic matter (DOM) was studied in a laboratory scale anaerobic/anoxic/oxic reactor for landfill leachate treatment.


2021 ◽  
pp. 0734242X2110667
Author(s):  
Valentina Grossule ◽  
Ding Fang ◽  
Dongbei Yue ◽  
Maria Cristina Lavagnolo ◽  
Roberto Raga

When approaching the study of new processes for leachate treatment, each influencing variable should be kept under control to better comprehend the treatment process. However, leachate quality is difficult to control as it varies dramatically from one landfill to another, and in line with landfill ageing. To overcome this problem, the present study investigated the option of preparing a reliable artificial leachate in terms of quality consistency and representativeness in simulating the composition of real municipal solid waste (MSW) leachate, in view of further investigate the recent treatment process using black soldier fly (BSF) larvae. Two recipes were used to simulate a real leachate (RL): one including chemical ingredients alone (artificial synthetic leachate-SL), and the other including chemicals mixed with artificial food waste (FW) eluate (artificial mixed leachate-ML). Research data were analysed, elaborated and discussed to assess simulation performance according to a series of parameters, such as Analytical representativeness, Treatment representativeness (in this case specific for the BSF larvae process), Recipe relevance, Repeatability and Flexibility in selectively modifying individual quality parameters. The best leachate simulation performance was achieved by the synthetic leachate, with concentration values generally ranging between 97% and 118% of the RL values. When feeding larvae with both RL and SL, similar mortality values and growth performance were observed.


2006 ◽  
Vol 1 (3) ◽  
Author(s):  
A. Vilar ◽  
S. Gil ◽  
M. A. Aparicio ◽  
C. Kennes ◽  
M. C. Veiga

The optimization of leachate treatment was investigated as well as the configuration of a biological-ozonation process. The leachate used for the experiments was diluted to 1/5 with tap water and treated anaerobically. The anaerobic effluent and the raw leachate were treated with ozone in order to increase their biodegradability getting the minimum organic matter removal. Both were submitted to the ozonation process, applying a constant ozone dose and varying the contact time. The ozonation of raw leachate produced a decrease of COD and BOD5 concentrations as well as BOD5/COD ratios, applying an ozone dose of 38.72 mg/L·min and contact times between 15 and 60 minutes. Ozonation as a pre-treatment process to the biological system did not improve the biodegradability of the raw leachate. The anaerobic effluent from the reactor fed with leachate diluted to 1/5, was subjected to an ozone dose of 34.99 mg/L·min and applying different contact times. BODf values increased from 74.75 up to 1220 mg/L and BODf/COD ratios reached values higher than 1. Then, the application of ozone to the anaerobic effluent led to the improvement of the biodegradability of the leachate as well as the BODf/COD ratio for all the contact times used.


2020 ◽  
Vol 401 ◽  
pp. 126157 ◽  
Author(s):  
Min-Da Yu ◽  
Bei-Dou Xi ◽  
Zong-Qiang Zhu ◽  
Li Zhang ◽  
Chao Yang ◽  
...  

2019 ◽  
Vol 80 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Ahmed Samir Naje ◽  
Mohammed A. Ajeel ◽  
Isam Mohamad Ali ◽  
Hussein A. M. Al-Zubaidi ◽  
Peter Adeniyi Alaba

Abstract In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.


2020 ◽  
Vol 28 (1) ◽  
pp. 249-253 ◽  
Author(s):  
Qun Wang ◽  
Lanhui Jiang ◽  
Chengran Fang ◽  
Hongzhi Mao ◽  
Haifeng Zhuang

2019 ◽  
Vol 276 ◽  
pp. 06030 ◽  
Author(s):  
Iva Yenis Septiariva ◽  
Tri Padmi ◽  
Enri Damanhuri ◽  
Qomarudin Helmy

Landfill is the most commonly method of municipal solid waste disposal in many countries. This practice has great potential to produce highly polluted leachate in massive quantities, which can cause environmental contamination. Biological processes are known as a common method to treat municipal leachate however this process alone in is less effective, especially in reducing the concentration of organic pollutants (BOD5/COD ratio). Leachate properties are site-specific and greatly influenced by landfill age. This study focuses on the investigation of treatment methods that can increase the extent of leachate biodegradability by applying an ozone concentration of 2.5 mg/L with up to 360 minutes of contact time. In this study, batch reactors were used and operated in anaerobic and aerobic conditions. The leachate used here represents both young and old leachate. Several treatment combinations were compared: Variation I (a combination of biologically aerobic and anaerobic process), Variation II (ozonation included as a pre-treatment process), and Variation III (ozonation was included as a post-treatment process). The results suggest that the BOD5/COD ratios of young and old leachates were 0.58 and 0.21, respectively. The COD removal for a young and old leachate treatment by biological process alone was 96.8% and 50.8%, respectively. Meanwhile, a combination of anaerobic-ozonation-aerobic processes gave better COD removal. Ozonation had a significant effect on the old leachate treatment, where the COD removal rose from 50.8% to 75%. Ozonation is a type of technology that can be applied to a subsequence treatment of biological processes in order to elevate the COD removal efficiency.


Sign in / Sign up

Export Citation Format

Share Document